
imaFlex CXP-12 Quad
Applet Feature Reference Manual for
Acq_QuadCXP12Area

Functional Description
For pylon or GenTL Usage

Document Number: AW001872
Part Number: 000 (English)
Document Version: 01
Release Date: 22 December 2023
Applet Version 1.0.1.0

Contacting Basler Support Worldwide

Europe, Middle East, Africa
Tel. +49 4102 463 515
support.europe@baslerweb.com

The Americas
Tel. +1 610 280 0171
support.usa@baslerweb.com

Asia-Pacific
Tel. +65 6367 1355
support.asia@baslerweb.com

Singapore
Tel. +65 6367 1355
support.asia@baslerweb.com

Taiwan
Tel. +886 3 558 3955
support.asia@baslerweb.com

China
Tel. +86 10 6295 2828
support.asia@baslerweb.com

Korea
Tel. +82 31 714 3114
support.asia@baslerweb.com

Japan
Tel. +81 3 6672 2333
support.asia@baslerweb.com

https://www.baslerweb.com/en/sales-support/support-contact

Supplemental Information
Acquisition Card Documentation:
https://docs.baslerweb.com/acquisition-cards
Frame Grabber Documentation:
https://docs.baslerweb.com/frame-grabbers
Framegrabber SDK Documentation:
https://docs.baslerweb.com/frame-grabbers/framegrabber-sdk-overview.html

All material in this publication is subject to change without notice and is copyright
Basler AG.

https://www.baslerweb.com/en/sales-support/support-contact
https://docs.baslerweb.com/acquisition-cards
https://docs.baslerweb.com/frame-grabbers
https://docs.baslerweb.com/frame-grabbers/framegrabber-sdk-overview.html

imaFlex CXP-12 Quad Acq_QuadCXP12Area iii

Table of Contents
1. Introduction .. 1

1.1. Features of Applet Acq_QuadCXP12Area ... 1
1.1.1. Parameterization Order ... 3

1.2. Bandwidth ... 3
1.3. Requirements .. 3

1.3.1. Software Requirements ... 4
1.3.2. Hardware Requirements .. 4
1.3.3. License .. 4

1.4. Camera Interface ... 4
1.5. Frame ID .. 4
1.6. Image Transfer to PC Memory ... 5

2. CoaXPress ... 6
2.1. PixelFormat ... 6
2.2. SystemmonitorUsedCxpConnections ... 7
2.3. PacketTagErrorCount ... 8
2.4. CorrectedErrorCount .. 8
2.5. UncorrectedErrorCount .. 9
2.6. SystemmonitorPacketbufferOverflowCount .. 9
2.7. SystemmonitorPacketbufferOverflowSource ... 10
2.8. SystemmonitorCxpImageLineMode ... 10

3. Camera .. 11
3.1. CameraEvents ... 11

3.1.1. FrameTransferStart ... 11
3.1.2. FrameTransferEnd .. 11

4. SensorGeometry ... 12
4.1. VantagePoint ... 12
4.2. SensorWidth .. 12
4.3. SensorHeight ... 13

5. ROI .. 14
5.1. Width .. 15
5.2. Height ... 16
5.3. OffsetX .. 16
5.4. OffsetY .. 17

6. Trigger ... 18
6.1. Features and Functional Blocks of Area Trigger ... 18
6.2. Digital Input/Output Mapping .. 22
6.3. Event Overview ... 22
6.4. Trigger Scenarios .. 23

6.4.1. Internal Frequency Generator / frame grabber Controlled ... 23
6.4.2. External Trigger Signals / IO Triggered ... 24
6.4.3. Control of Three Flash Lights .. 27
6.4.4. Software Trigger ... 30
6.4.5. Software Trigger with Trigger Queue .. 33
6.4.6. External Trigger with Trigger Queue ... 35
6.4.7. Bypass External Trigger Signals .. 36
6.4.8. Multi Camera Applications / Synchronized Cameras .. 36
6.4.9. Hardware System Analysis and Error Detection / Trigger Debugging 36

6.5. Parameters .. 37
6.5.1. AreaTriggerMode .. 37
6.5.2. TriggerState .. 38
6.5.3. TriggerOutputFrequency .. 39
6.5.4. Trigger Input ... 40

6.5.4.1. External ... 40
6.5.4.1.1. TriggerInDebounce .. 40
6.5.4.1.2. GPI ... 41
6.5.4.1.3. FrontGPI ... 41

Table of Contents

imaFlex CXP-12 Quad Acq_QuadCXP12Area iv

6.5.4.1.4. TriggerInSource ... 42
6.5.4.1.5. TriggerInPolarity ... 43
6.5.4.1.6. TriggerInDownscale ... 43
6.5.4.1.7. TriggerInDownscalePhase .. 43

6.5.4.2. Software Trigger ... 44
6.5.4.2.1. SendSoftwareTrigger .. 44
6.5.4.2.2. SoftwareTriggerIsBusy ... 45
6.5.4.2.3. SoftwareTriggerQueueFillLevel ... 45

6.5.4.3. InStatistics ... 45
6.5.4.3.1. TriggerInStatisticsSource .. 46
6.5.4.3.2. TriggerInStatisticsPolarity ... 46
6.5.4.3.3. TriggerInStatisticsPulseCount ... 47
6.5.4.3.4. TriggerInStatisticsPulseCountClear ... 47
6.5.4.3.5. TriggerInStatisticsFrequency ... 47
6.5.4.3.6. TriggerInStatisticsMinimumFrequency ... 48
6.5.4.3.7. TriggerInStatisticsMaximumFrequency .. 48
6.5.4.3.8. TriggerInStatisticsMinMaxFrequencyClear ... 49
6.5.4.3.9. LineFront0RisingEdge .. 49
6.5.4.3.10. LineFront0FallingEdge .. 49
6.5.4.3.11. Line0RisingEdge .. 50
6.5.4.3.12. Line0FallingEdge ... 50

6.5.5. Sequencer .. 50
6.5.5.1. TriggerMultiplyPulses .. 50

6.5.6. Queue .. 51
6.5.6.1. TriggerQueueMode ... 51
6.5.6.2. TriggerQueueFillLevel ... 51
6.5.6.3. TriggerQueueFillLevelEventOnThreshold .. 52
6.5.6.4. TriggerQueueFillLevelEventOffThreshold .. 52
6.5.6.5. TriggerQueueFilllevelThresholdOn ... 53
6.5.6.6. TriggerQueueFilllevelThresholdOff ... 53

6.5.7. Pulse Form Generator 0 .. 53
6.5.7.1. TriggerPulseFormGenerator0Downscale et al. .. 54
6.5.7.2. TriggerPulseFormGenerator0DownscalePhase et al. ... 55
6.5.7.3. TriggerPulseFormGenerator0Delay et al. ... 56
6.5.7.4. TriggerPulseFormGenerator0Width et al. .. 56

6.5.8. Pulse Form Generator 1 .. 57
6.5.9. Pulse Form Generator 2 .. 57
6.5.10. Pulse Form Generator 3 .. 57
6.5.11. CameraOutSignalMapping .. 57

6.5.11.1. CxpLinkTrigger0Source ... 57
6.5.11.2. CxpLinkTrigger1Source ... 59
6.5.11.3. CxpLinkTrigger2Source ... 61
6.5.11.4. CxpLinkTrigger3Source ... 63

6.5.12. DigitalOutput ... 65
6.5.12.1. TriggerOutSelectGPO0 et al. ... 65
6.5.12.2. TriggerOutSelectFrontGPO0 et al. ... 67
6.5.12.3. OutStatistics ... 69

6.5.12.3.1. TriggerExceededPeriodLimits .. 69
6.5.12.3.2. TriggerExceededPeriodLimitsClear .. 69
6.5.12.3.3. TriggerOutStatisticsSource .. 69
6.5.12.3.4. TriggerOutStatisticsPulseCount ... 70
6.5.12.3.5. TriggerOutStatisticsPulseCountClear ... 70
6.5.12.3.6. MissingCameraFrameResponse ... 71

6.5.12.3.6.1. .. 71
6.5.12.3.7. MissingCameraFrameResponseClear .. 72
6.5.12.3.8. TriggerExceededPeriodLimits .. 72
6.5.12.3.9. FrameTriggerMissed .. 72

6.5.13. OutputEvents .. 72

Table of Contents

imaFlex CXP-12 Quad Acq_QuadCXP12Area v

6.5.13.1. TriggerOutputEventSelect .. 73
6.5.13.2. AcquisitionTrigger ... 73

7. BufferStatus ... 74
7.1. FillLevel ... 74
7.2. Overflow .. 75
7.3. OverflowOffThreshold ... 75
7.4. OverflowOnThreshold ... 76
7.5. OverflowSyncOnThreshold ... 76
7.6. OverflowEventSelect .. 76
7.7. OverflowEvents .. 77

7.7.1. Overflow ... 78
8. ImageSelector .. 79

8.1. ImageSelectPeriod ... 79
8.2. ImageSelect .. 80

9. WhiteBalance ... 81
9.1. ScalingFactorGreen ... 81
9.2. ScalingFactorRed ... 81
9.3. ScalingFactorBlue .. 81

10. ColorConverter ... 83
11. LookupTable ... 84

11.1. LutEnable .. 84
11.2. LutType ... 84
11.3. LutValue .. 85
11.4. LutValueRed .. 86
11.5. LutValueGreen ... 86
11.6. LutValueBlue .. 86
11.7. LutCustomFile .. 87
11.8. LutSaveFile .. 89
11.9. AppletProperties ... 89

11.9.1. LutImplementationType .. 89
11.9.2. LutInputPixelBitDepth ... 89
11.9.3. LutOutputPixelBitDepth .. 90

12. Processing ... 91
12.1. ProcessingOffset .. 91
12.2. ProcessingGain .. 92
12.3. ProcessingGamma ... 93
12.4. ProcessingInvert .. 94

13. OutputFormat ... 95
13.1. Format .. 95
13.2. BitAlignment .. 98
13.3. PixelDepth ... 99
13.4. CustomBitShiftRight ... 99

14. Revision History .. 101
14.1. Known Issues .. 101

Glossary ... 102
Index .. 105

imaFlex CXP-12 Quad Acq_QuadCXP12Area 1

Chapter 1. Introduction
This document provides you with detailed information on applet "Acq_QuadCXP12Area" for imaFlex CXP-12
Quad frame grabber.

In the following, you will find a full description of the applet's functionality and features.

For information on the hardware or for a general introduction on how to configure the CXP-12 Interface Card
using the pylon API, the pylon Viewer, or the gpioTool check the document which can be found in https://
docs.baslerweb.com/pc-cards.

All applet-specific parameters described in this document are as represented in the GenTL interface.

For a general explanation of the GenTL interface, check the Basler GenTL
interface documentation (https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-
gentl-producer-feature-documentation/).

For information on camera features, check the respective camera documentation.

For information on Basler pylon features and for API documentation, check the pylon documentation.

1.1. Features of Applet Acq_QuadCXP12Area

"Acq_QuadCXP12Area" is a quad-camera applet. Up to four individual cameras can be used. The
features of this applet are fully available for all camera ports. You can configure the CoaXPress camera
interface for CoaXPress cameras version 1.1.1 and 2.0, transferring grayscale (monochrome), Bayer
pattern, or color pixels. Allowed pixel formats are Gray (Mono8, Mono10, Mono12, Mono14, Mono16),
Bayer (BayerGR8, BayerGR10, BayerGR12, BayerGR14, BayerRG8, BayerRG10, BayerRG12, BayerRG14,
BayerGB8, BayerGB10, BayerGB12, BayerGB14, BayerBG8, BayerBG10, BayerBG12, BayerBG14), Color
(RGB8, RGB10, RGB12, RGB14, RGB16), and YCbCr422_8. You can only use single link CoaXPress cameras
with this applet. The maximum link speed is CXP-12. A multi-functional area trigger is included in the applet.
This allows you to control the camera or external devices using frame grabber generated, external, or software
generated trigger pulses. Area scan cameras transferring images with a resolution of up to 32768 by 65536
pixels are supported. The applet is processing data at a bit depth of 16 bits. An image selector at the camera
port facilitates the selection of one image out of a parameterizable sequence of images. This enables the
distribution of the images to multiple frame grabber and PCs. For reverse operation, you can mirror the image
in x-direction and y-direction before cutting the ROI. Acquired images are buffered in frame grabber memory.
You can select a region of interest (ROI) for further processing. The stepsize of the ROI width is 8 pixel. The
ROI stepsize for the image height is 1 line. The high quality Bayer pattern de-mosaicing is based on a 5x5
kernel size. A color converter automatically converts the input pixel formats to the output formats. In this applet
conversions from monochrome, RGB or Bayer to monochrome and RGB can be performed. You can configure
the 14 bit full resolution lookup table either by using a user defined table, or by using a processor. The processor
gives you the opportunity to use pre-defined functions such as offset, gain, invert to enhance the image quality.
The color components are processed individually. A gamma correction is possible.

Processed image data are output by the applet via high speed DMA channels. You can select the pixel format
of the output. The pixel format can either be 8 bit, 10 bit packed, 12 bit packed, 14 bit packed, or 16 bits per
pixel (or per pixel component if you work with a color format).

https://docs.baslerweb.com/pc-cards
https://docs.baslerweb.com/pc-cards
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/

Introduction

imaFlex CXP-12 Quad Acq_QuadCXP12Area 2

Table 1.1. Feature Summary of Acq_QuadCXP12Area

Feature Applet Property
Applet Name

Acq_QuadCXP12Area

Type of Applet AcquisitionApplets

Board imaFlex CXP-12 Quad

No. of Cameras 4 , asynchronous or synchronous

Camera Type CoaXPress, link aggregation max. 1, maximum speed
CXP-12, Version 1.1.1 and 2.0

Sensor Type Area Scan

Camera Format Monochrome, Bayer Pattern or RGB

Pixel Format Gray (Mono8, Mono10, Mono12, Mono14, Mono16),
Bayer (BayerGR8, BayerGR10, BayerGR12,
BayerGR14, BayerRG8, BayerRG10, BayerRG12,
BayerRG14, BayerGB8, BayerGB10, BayerGB12,
BayerGB14, BayerBG8, BayerBG10, BayerBG12,
BayerBG14), Color (RGB8, RGB10, RGB12, RGB14,
RGB16), and YCbCr422_8.

Processing Bit Depth 16 Bit per color component

Maximum Images Dimensions 32768 * 65536

ROI Stepsize x: 8, y: 1

Tap Geometry Sorting 1X-1Y only

Mirroring Yes, horizontal and vertical (set the parameter
VantagePoint)

Image Selector Yes

Noise Filter No

Shading Correction No

Dead Pixel Interpolation No

Bayer Filter Yes, High Quality Extended (HQe)

Color White Balancing Yes

Color Converter yes, Mono, RGB or Bayer to Mono or RGB

Lookup Table Full Resolution

Input bits = 14, Output bits = 16

Lookup table can be disabled.

DMA Full Speed

DMA Image Output Format All grayscale and color formats. See description
above.

Event Generation yes

Overflow Control yes

Introduction

imaFlex CXP-12 Quad Acq_QuadCXP12Area 3

1.1.1. Parameterization Order

We recommend to configure the functional blocks which are responsible for sensor setup/correction first. This
will be the camera settings, shading correction, and dead pixel interpolation (if available). Afterwards, you can
configure other image enhancement functional blocks such as white balancing, noise filter, and lookup table.
By default, all presets are configured for receiving images directly.

1.2. Bandwidth

The maximum bandwidths of applet Acq_QuadCXP12Area are listed in the following table.

Table 1.2. Bandwidth of Acq_QuadCXP12Area

Description Bandwidth
Max. CXP Speed CXP-12

Peak Bandwidth per Camera 1200 MPixel/s

Mean Bandwidth per Camera 1200 MPixel/s

DMA Bandwidth 7200 MByte/s (depends on PC mainboard)

The peak bandwidth defines the maximum allowed bandwidth for each camera at the camera interface. If the
camera's peak bandwidth is higher than the mean bandwidth, the frame grabber on-board buffer will fill up as
the data can be buffered, but not be processed at that speed.

The mean bandwidth per camera describes the maximally allowed mean bandwidth for each camera at the
camera interface. It is the product of the framerate and the image pixels. For example, with 1-megapixel images
at a framerate of 100 frames per second, the mean bandwidth will be 100 MPixel/s. In case of 8bit per pixel
as output format, this would be equal to 100 MB per second.

The required output bandwidth of an applet can differ from the input bandwidth. A region of interest (ROI) and
the output format can change the required output bandwidth and the maximum mean bandwidth. Moreover,
this applet is a Bayer applet. The required output bandwidth will be three times higher than the input bandwidth.
(This applies only when debayering is switched to ON.) Mind that the DMA bandwidth is the total bandwidth. The
sum of all camera channel bandwidths has to be less than the maximum DMA bandwidth to avoid overflows.

Regard the relation between MPixel/s and MByte/s: The MByte/s depend on the applet and its parameterization
concerning the pixel format. It is possible to acquire more than 8 bit per pixel or to convert from one bit depth
to another. 1 MByte is 1,000,000 Byte.

Bandwidth Varies

The exact maximum DMA bandwidth depends on the used PC system and its chipset. The
camera bandwidth depends on the image size and the selected frame rate. The given values
of 7200 MByte/s for the possible DMA bandwidth might be lower due to the chipset and its
configuration. Additionally, some PCIe slots do not support the required number of lanes to transfer
the requested or expected bandwidth. In these cases, have a look at the mainboard specification. A
behaviour like multiplexing between several PCIe slots can be seen in rare cases. Some mainboard
manufacturers provide a BIOS feature where you can select the PCIe payload size: Always try to
set this to its maximum value or simply to automatic. This can help in specific cases.

1.3. Requirements

In the following, the requirements on software, hardware and frame grabber license are listed.

Introduction

imaFlex CXP-12 Quad Acq_QuadCXP12Area 4

1.3.1. Software Requirements
To run this applet, a supporting runtime environment is required. This can be either Basler pylon, or the Basler
Framegrabber SDK providing the GenTL interface.

1.3.2. Hardware Requirements
To run applet "Acq_QuadCXP12Area", a Basler imaFlex CXP-12 Quad frame grabber is required.

For PC system requirements, check the frame grabber hardware documentation. The applet itself does not
require any additional PC system requirements.

1.3.3. License
This applet is of type AcquisitionApplets. For applets of this type, no license is required. All compatible frame
grabbers can run the applet using the Basler Framegrabber SDK.

1.4. Camera Interface
Applet "Acq_QuadCXP12Area" supports 4 CXP cameras. The frame grabber has 4 connectors. Connect one
camera cable of each camera to the ports of the frame grabber. The mapping of the ports between the camera
and the frame grabber is not important. You can chose any order.
Figure 1.1. Camera Interface and Camera Cable Setup

Port 4
Port 3

Port 2
Port 1

Cable BNC

RAM

RAM
FPGA

CoaXPress
1-lane (BNC)

CoaXPress
1-lane (BNC)

Cable BNC

CoaXPress
1-lane (BNC)

CoaXPress
1-lane (BNC)

1.5. Frame ID
For CoaXPress cameras, each frame includes a source tag also called frame ID. This applet will output each
frame to the host PC attached with this frame ID. Moreover, overflow events will also include this frame ID. By
this, the exact mapping of a given frame in the host PC to a camera frame is possible.

Introduction

imaFlex CXP-12 Quad Acq_QuadCXP12Area 5

Check chapter Chapter 7, 'BufferStatus' for more information about overflow conditions and the overflow event
data structure including the frame ID.

The frame ID is processed together with the images in the host PC. Check the Basler GenTL documentation to
learn on how to extract the frame ID from the buffer (https://www.baslerweb.com/en/sales-support/downloads/
document-downloads/cxp-gentl-producer-feature-documentation/).

1.6. Image Transfer to PC Memory
The image transfer between frame grabber and PC is performed via DMA transfers. In this applet, 4 DMA
channels exist for transferring image data. One channel for each camera. The DMA channels have the same
indices as the cameras, starting with 0. The applet output format can be set via the parameters of the output
format module. See Chapter 13, 'OutputFormat'. All outputs are little-endian coded.

https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/

imaFlex CXP-12 Quad Acq_QuadCXP12Area 6

Chapter 2. CoaXPress
This applet can be used with up to 4 area scan cameras. To receive correct image data from your camera,
it is crucial that the camera output format matches the selected frame grabber input format. The following
parameters configure the frame grabber's camera interface to match with the individual camera pixel format.
Most cameras support different operation modes. Consult the manual of your camera to obtain the necessary
information how to configure the camera to the desired pixel format.

Ensure that the images transferred by the camera do not exceed the maximum allowed image dimensions for
this applet (32768 x 65536).

With the following parameters you can define the way trigger packets are sent from the frame grabber to the
camera on the CXP link.

2.1. PixelFormat

This parameter specifies the data format of the connected camera.

The formats defined in the following list can be selected. Choose the pixel format which best matches with
your camera.

In this applet, the processing data bit depth is 16 bit. The camera interface automatically performs a conversion
to the 16 bit format using bit shifting independently from the selected camera format. If the camera bit depth is
greater than the processing bit depth, bits will be right shifted to meet the internal bit depth. If the camera bit
depth is less than the processing bit depth, bits will be left shifted to meet the internal bit depth. In this case,
the lower bits are fixed to zero.

This applet performs a Bayer de-mosaicing. The Bayer pattern is derived from the pixel format.

GenTL Controls the Pixel Format

The GenTL interface has a built in automatic adaptation of the pixel format to the camera settings.
Changing the applet pixel format might be overwritten by the GenTL on acquisition start. You
can only set the pixel format if the automatic setting is disabled. See the GenTL documentation
parameter AutomaticFormatControl for more details.

CoaXPress

imaFlex CXP-12 Quad Acq_QuadCXP12Area 7

Table 2.1. Parameter properties of PixelFormat

Property Value
Name PixelFormat
Display Name Pixel Format
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values BayerGR8 Bayer GR 8

BayerGR10p Bayer GR 10p
BayerGR12p Bayer GR 12p
BayerGR14p Bayer GR 14p
BayerRG8 Bayer RG 8
BayerRG10p Bayer RG 10p
BayerRG12p Bayer RG 12p
BayerRG14p Bayer RG 14p
BayerGB8 Bayer GB 8
BayerGB10p Bayer GB 10p
BayerGB12p Bayer GB 12p
BayerGB14p Bayer GB 14p
BayerBG8 Bayer BG 8
BayerBG10p Bayer BG 10p
BayerBG12p Bayer BG 12p
BayerBG14p Bayer BG 14p
Mono8 Mono 8
Mono10p Mono 10p
Mono12p Mono 12p
Mono14p Mono 14p
Mono16 Mono 16p
RGB8 RGB 8
RGB10p RGB 10p
RGB12p RGB 12p
RGB14p RGB 14p
RGB16 RGB 16
YCbCr422_8 YCbCr422_8

Default value Mono8

Example 2.1. Usage of PixelFormat

/* Set */ PixelFormat = Mono8;
/* Get */ value_ = PixelFormat;

2.2. SystemmonitorUsedCxpConnections

The currently used number of CXP ports used in this process.

CoaXPress

imaFlex CXP-12 Quad Acq_QuadCXP12Area 8

Table 2.2. Parameter properties of SystemmonitorUsedCxpConnections

Property Value
Name SystemmonitorUsedCxpConnections
Display Name System Monitor Used Cxp Connections
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 1

Maximum 4
Stepsize 1

Example 2.2. Usage of SystemmonitorUsedCxpConnections

/* Get */ value_ = SystemmonitorUsedCxpConnections;

2.3. PacketTagErrorCount

The parameter reflects the current status of the camera operator. The parameter signalizes CXP stream packet
loss detection.

Table 2.3. Parameter properties of PacketTagErrorCount

Property Value
Name PacketTagErrorCount
Display Name Packet Tag Error Count
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 4095
Stepsize 1

Example 2.3. Usage of PacketTagErrorCount

/* Get */ value_ = PacketTagErrorCount;

2.4. CorrectedErrorCount

The parameter reflects the current status of the camera operator. The parameter signalizes single byte error
correction in CXP stream packets.

CoaXPress

imaFlex CXP-12 Quad Acq_QuadCXP12Area 9

Table 2.4. Parameter properties of CorrectedErrorCount

Property Value
Name CorrectedErrorCount
Display Name Corrected Error Count
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 4095
Stepsize 1

Example 2.4. Usage of CorrectedErrorCount

/* Get */ value_ = CorrectedErrorCount;

2.5. UncorrectedErrorCount
The parameter reflects the current status of the camera operator. The parameter signalizes multiple byte error
detection in CXP stream packets.
Table 2.5. Parameter properties of UncorrectedErrorCount

Property Value
Name UncorrectedErrorCount
Display Name Uncorrected Error Count
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 4095
Stepsize 1

Example 2.5. Usage of UncorrectedErrorCount

/* Get */ value_ = UncorrectedErrorCount;

2.6. SystemmonitorPacketbufferOverflowCount
Represents the number of overflows, if an overflow occurred due to not correctly aligned package order.
Table 2.6. Parameter properties of SystemmonitorPacketbufferOverflowCount

Property Value
Name SystemmonitorPacketbufferOverflowCount
Display Name System Monitor Packet Buffer Overflow Count
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 4095
Stepsize 1

CoaXPress

imaFlex CXP-12 Quad Acq_QuadCXP12Area 10

Example 2.6. Usage of SystemmonitorPacketbufferOverflowCount

/* Get */ value_ = SystemmonitorPacketbufferOverflowCount;

2.7. SystemmonitorPacketbufferOverflowSource
This parameter represents the port, which has overflows due to not correctly aligned package order.

Table 2.7. Parameter properties of SystemmonitorPacketbufferOverflowSource

Property Value
Name SystemmonitorPacketbufferOverflowSource
Display Name System Monitor Packet Buffer Overflow Source
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 15
Stepsize 1

Example 2.7. Usage of SystemmonitorPacketbufferOverflowSource

/* Get */ value_ = SystemmonitorPacketbufferOverflowSource;

2.8. SystemmonitorCxpImageLineMode
This parameter informs on the current transfer mode, used by the camera. The transfer can be an areascan
(= 0) or linescan (= 1) image.

Table 2.8. Parameter properties of SystemmonitorCxpImageLineMode

Property Value
Name SystemmonitorCxpImageLineMode
Display Name System Monitor Cxp Image Line Mode
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 1
Stepsize 1

Example 2.8. Usage of SystemmonitorCxpImageLineMode

/* Get */ value_ = SystemmonitorCxpImageLineMode;

imaFlex CXP-12 Quad Acq_QuadCXP12Area 11

Chapter 3. Camera
This applet Acq_QuadCXP12Area for the imaFlex CXP-12 Quad acquires the sensor data of an area scan
camera. When this is performed some sensor dimension depending information can be used to register an
event based callback function.

3.1. CameraEvents
In programming or runtime environments, a callback function is a piece of executable code that is passed
as an argument, which is expected to call back (execute) exactly that time an event is triggered. This applet
can generate some software callback events based on applet-events as explained in the following section.
These events are not related to a special camera functionality. Other event sources are described in additional
sections of this document.

The Basler Framegrabber SDK enables an application to get these event notifications about certain state
changes at the data flow from camera to RAM and the image and trigger processing as well. Please consult the
Basler Framegrabber SDK documentation for more details concerning the implementation of this functionality.

3.1.1. FrameTransferStart

This event is generated when the first pixel of one camera frame arrives at the applet. Keep in mind that a
high framerate can cause high interrupt rates which might slow down the overall PC system. This event can
only occur if the acquisition is running.

The applet generates frames from linescan cameras unsing the image trigger module. The event is generated
with the first pixel of the generated frame which is simultaneously to the arrival of a camera line. Keep in mind
that a high framerate can cause high interrupt rates which might slow down the overall PC system. This event
can only occur if the acquisition is running.

3.1.2. FrameTransferEnd

This event is generated right after the last pixel of one camera frame arrives at the applet. Keep in mind that
a high framerate can cause high interrupt rates which might slow down the overall PC system. This event can
only occur if the acquisition is running.

The applet generates frames from linescan cameras unsing the image trigger module. The event is generated
when the last pixel passes through the image trigger module. Note that this might not be at the same time as
the pixel arrives from the camera at the framegrabber as the image trigger module needs to delay the data
to wait for closing gates. Keep in mind that a high framerate can cause high interrupt rates which might slow
down the overall PC system. This event can only occur if the acquisition is running.

imaFlex CXP-12 Quad Acq_QuadCXP12Area 12

Chapter 4. SensorGeometry
Some operations, for example mirroring or tap sorting, require knowledge on the sensor dimension and
orientation of the camera. The following parameters supply this kind of information.

4.1. VantagePoint

This parameter defines the vantage point. Use this parameter to mirror the image. Note that when using this
parameter for mirroring, the received sensor image is mirrored and not the selected ROI in the frame grabber.
Therefore, to mirror the ROI in the frame grabber, ensure to set the correct offsets in the frame grabber.

If a horizontal mirroring is active, the parameter SensorWidth limits the maximum width. The parameter
dependency will then be OffsetX + Width <= SensorWidth.

If a vertical mirroring is active , the parameter SensorHeight limits the maximum height. The parameter
dependency will then be OffsetY + Height <= SensorHeight.

Table 4.1. Parameter properties of VantagePoint

Property Value
Name VantagePoint
Display Name Vantage Point
Interface IEnumeration
Access policy Read/Write
Visibility Beginner
Allowed values TopLeft Top Left

TopRight Top Right
BottomLeft Bottom Left
BottomRight Bottom Right

Default value TopLeft

Example 4.1. Usage of VantagePoint

/* Set */ VantagePoint = TopLeft;
/* Get */ value_ = VantagePoint;

4.2. SensorWidth

To mirror the incoming data correctly, the parameter SensorWidth is required. The value of SensorWidth is
ignored, if VantagePoint = Top-Left or Bottom-Left. If also a vertical mirroring is used, the available DRAM and
sensor height limit the maximum sensor width. This is so, because the sensor image needs to fit twice into the
DRAM, because double buffering is used.

If No Mirroring Is Active, the Value of SensorWidth Is Not Used

If no mirroring is active, the value of the parameter SensorWidth is not used. Instead, the sum of
OffsetX and Width is used. This makes the use of the module easier as an extra configuration is
avoided, if defaults are used.

SensorGeometry

imaFlex CXP-12 Quad Acq_QuadCXP12Area 13

Table 4.2. Parameter properties of SensorWidth

Property Value
Name SensorWidth
Display Name Sensor Width
Interface IInteger
Access policy Read/Write
Visibility Beginner
Allowed values Minimum 8

Maximum 32768
Stepsize 8

Default value 1024
Unit of measure pixel

Example 4.2. Usage of SensorWidth

/* Set */ SensorWidth = 1024;
/* Get */ value_ = SensorWidth;

4.3. SensorHeight
For vertical mirroring or tap geometry sorting in vertical direction, the applet needs to be parameterized with
the exact height transferred from the camera to the frame grabber. If you have set a region of interest in the
camera, the parameter SensorHeight needs to be set to the ROI size, otherwise use the sensor height.

If Only One Y-Zone Is Used and No Vertical Mirroring Is Active,
the Value of SensorHeight Is Not Used
If no vertical mirroring is configured the value of the parameter SensorHeight is not used. Instead,
the sum of OffsetY and Height is used. This makes the use of the module easier as an extra
configuration is avoided, if defaults are used.

Table 4.3. Parameter properties of SensorHeight

Property Value
Name SensorHeight
Display Name Sensor Height
Interface IInteger
Access policy Read/Write
Visibility Beginner
Allowed values Minimum 2

Maximum 65536
Stepsize 1

Default value 1024
Unit of measure pixel

Example 4.3. Usage of SensorHeight

/* Set */ SensorHeight = 1024;
/* Get */ value_ = SensorHeight;

imaFlex CXP-12 Quad Acq_QuadCXP12Area 14

Chapter 5. ROI
This module allows the definition of a region of interest (ROI), also called area of interest (AOI). A ROI allows
the selection of a smaller subset pixel area from the input image. It is defined by using parameters OffsetX,
Width, OffsetY and Height. The following figure illustrates the parameters.

Figure 5.1. Region of Interest

As can be seen, the region of interest lies within the input image dimensions. Thus, if the image dimension
provided by the camera is greater or equal to the specified ROI parameters, the applet will fully cut-out the
ROI subset pixel area. However, if the image provided by the camera is smaller than the specified ROI, lines
will be filled with random pixel content and the image height might be cut or filled with random image lines as
illustrated in the following.

Figure 5.2. Region of Interest Selection Outside the Input Image Dimensions

Furthermore, mind that the image sent by the camera must not exceed the maximum allowed image
dimensions. This applet allows a maximum image width of 32768 pixels and a maximum image height of 65536
lines. The chosen ROI settings can have a direct influence on the maximum bandwidth of the applet as they
define the image size and thus, define the amount of data.

The parameters have dynamic value ranges. For example an x-offset cannot be set if the sum of the offset
and the image width will exceed the maximum image width. To set a high x-offset, the image width has to be
reduced, first. Hence, the order of setting the parameters for this module is important. The return values of the
function calls in the SDK should always be evaluated to check if changes were accepted.

Mind the minimum step size of the parameters. This applet has a minimum step size of 8 pixel for the width
and the x-offset, while the step size for the height and the y-offset is 1.

ROI

imaFlex CXP-12 Quad Acq_QuadCXP12Area 15

The settings made in this module will define the display size and buffer size if the applet is used in microDisplay.
If you use the applet in your own programs, ensure to define a sufficient buffer size for the DMA transfers in
your PC memory.

All ROI parameters can only be changed if the acquisition is not started i.e. stopped.

Automatic Adaptation to Camera Width and Height with the
GenTL Adaptor
The GenTL adaptor can automatically copy the image width and height from the camera to the
applet settings so that the user does not have to set these values. Changing the Width and Height
of the applet might get overwritten by the Gen TL on acquisition start. You can only set the width
and height if this automatic adaptation is disabled. See the GenTL documentation parameter
AutomaticROIControl for more details.

ROI Setting Defines GenTL Buffer Info
The parameters define the DMA output size and therefore the GenTL buffer info values to inform
the consumer about the used output image width and height of the interface. See the GenTL
documentation parameter AutomaticROIControl for more details.

Influence on Bandwidth
A ROI might cause a strong reduction of the required bandwidth. If possible, the camera frame
dimension should be reduced directly in the camera to the desired size instead of reducing the size
in the applet. This will reduce the required bandwidth between the camera and the frame grabber.

5.1. Width
The parameter specifies the width of the ROI. The values of parameters Width + OffsetX must not exceed the
maximum image width of 32768 pixels. If a horizontal mirroring is active the sensor width limits the maximum
width (Width + XOffset). If furthermore vertical mirroring is active the maximum width is limited by the DRAM
and sensor height (the sensor dimension needs to fit into the DRAM).

Maximum image width is reduced for horizontal mirrored images
Limitations of the available BRAM in the FPGA allow only to store smaller lines and there for the
images that can be mirrored needs to be smaller. A mirrored image can only have width of 8192,
the not mirrored image can have the full width of 32768.

Table 5.1. Parameter properties of Width

Property Value
Name Width
Display Name Width
Interface IInteger
Access policy Read/Write
Visibility Expert
Allowed values Minimum 8

Maximum 32768
Stepsize 8

Default value 1024
Unit of measure pixel

ROI

imaFlex CXP-12 Quad Acq_QuadCXP12Area 16

Example 5.1. Usage of Width

/* Set */ Width = 1024;
/* Get */ value_ = Width;

5.2. Height
The parameter specifies the height of the ROI. The values of parameters Height + OffsetY must not exceed the
maximum image height of 65536 pixels. If a vertical mirroring is active the sensor height limits the maximum
height (Height + YOffset). Furthermore he maximum height is limited by the DRAM and the sensor width (the
sensor dimension needs to fit into the DRAM).

Table 5.2. Parameter properties of Height

Property Value
Name Height
Display Name Height
Interface IInteger
Access policy Read/Write
Visibility Expert
Allowed values Minimum 2

Maximum 65536
Stepsize 1

Default value 1024
Unit of measure pixel

Example 5.2. Usage of Height

/* Set */ Height = 1024;
/* Get */ value_ = Height;

5.3. OffsetX
The x-offset is defined by this parameter. If a horizontal mirroring is active the sensor width limits the maximum
width (Width + XOffset). If furthermore vertical mirroring is active the maximum width is limited by the DRAM
and the sensor height (the sensor dimension needs to fit into the DRAM).

Table 5.3. Parameter properties of OffsetX

Property Value
Name OffsetX
Display Name Offset X
Interface IInteger
Access policy Read/Write
Visibility Expert
Allowed values Minimum 0

Maximum 32760
Stepsize 8

Default value 0
Unit of measure pixel

ROI

imaFlex CXP-12 Quad Acq_QuadCXP12Area 17

Example 5.3. Usage of OffsetX

/* Set */ OffsetX = 0;
/* Get */ value_ = OffsetX;

5.4. OffsetY
The y-offset is defined by this parameter. If a vertical mirroring is active the sensor height limits the maximum
height (Height + YOffset). Furthermore the maximum height is limited by the DRAM and the sensor width (the
sensor dimension needs to fit into the DRAM).

Table 5.4. Parameter properties of OffsetY

Property Value
Name OffsetY
Display Name Offset Y
Interface IInteger
Access policy Read/Write
Visibility Expert
Allowed values Minimum 0

Maximum 65535
Stepsize 1

Default value 0
Unit of measure pixel

Example 5.4. Usage of OffsetY

/* Set */ OffsetY = 0;
/* Get */ value_ = OffsetY;

imaFlex CXP-12 Quad Acq_QuadCXP12Area 18

Chapter 6. Trigger
The area trigger system enables the control of the image acquisition process of the frame grabber and the
connected cameras. In detail it controls the exact exposure time of the camera and controls external devices.
The trigger source can be external devices, internal frequency generators or the user's software application.

The imaFlex CXP-12 Quad frame grabber has eight input IOs available on its extension port plus 4 inputs
on the front IO connector. The extension port can be connected to external devices. Check the hardware
documentation for more information. The imaFlex CXP-12 Quad generates the desired trigger outputs and
control signals from the input events according to the trigger system's parameterization. The trigger system
outputs can be routed to the camera via the CoaXPress link. Additionally, outputs can be routed to the digital
outputs for control of external devices such as flash lights, for synchronizing or for debugging.

Figure 6.1. imaFlex CXP-12 Quad Trigger System

In the following an introduction into the Basler imaFlex CXP-12 Quad trigger system is presented. Several
trigger scenarios will show the possibilities and functionalities and will help to understand the trigger system.
The documentation includes the parameter reference where all parameters of the trigger system are listed and
their functionality is explained in detail.

6.1. Features and Functional Blocks of Area Trigger
The Basler trigger system was designed to fulfill the requirements of various applications. Powerful features
for trigger generation, controlling and monitoring were included in the implementation. This includes:

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 19

• Trigger signal generation for cameras and external devices.

• External devices such as encoders and light barriers can be used to source the trigger system and control
the trigger signal generation.

• In alternative an internal frequency generator can be used to generate trigger pulses.

• The trigger signal generation can be fully controlled by software . Single pulses or sequences of pulses can
be generated. The trigger system will automatically control and limit the output frequency.

• Input signal monitoring .

• Input signal frequency analysis and pulse counting .

• Input signal debouncing

• Input signal downscaling

• Pulse multiplication using a sequencer and controllable maximum output frequency. Make up to 65,000
output pulses out of a single input pulse.

• Trigger pulse queue for buffering up to 2000 pulses and control the output using a maximum frequency
valve.

• Four pulse form generators for individual controlling of pulse widths, delays and output downscaling.

• Up to 10 outputs depending on the frame grabber type plus the CoaXPress trigger outputs.

• A bypass option to keep the pulse forms of the input signals and forward them to outputs and cameras.

• Event generation for input and output monitoring by application software.

• Trigger state events for fill level monitoring, trigger busy states and lost trigger signals give full control of
the system.

• Camera frame loss notification .

• Full trigger signal reliability and easy error detections.

The trigger system is controlled and configured using parameters. Several read only parameters return status
information on the current trigger state. Moreover, the trigger system is capable of generating events for efficient
monitoring and controlling of the trigger system, the software, the frame grabber and external hardware.

The complex trigger system can be easily used and parameterized. The following block diagram figure shows
an overview of the trigger system. As can be seen, the trigger system consists of four different main functional
blocks.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 20

Figure 6.2. Trigger System

1. Trigger Input:

Trigger inputs can be external signals, as well as software generated inputs and the frequency generator.
An input monitoring and input statistics module allows analysis if the input signals.

External input signals are debounced and split into several paths for monitoring, and further processing.

Figure 6.3. Trigger Input Block Diagram

2. Input Pulse Processing:

The second main block of the trigger system is the Input Pulse Processing. External inputs as well as
software trigger generated pulses can be queued and multiplied in a sequencer if desired. All external
trigger pulses are processed in a maximum frequency valve. Pulses are only processed by this valve if
their frequency is higher than the previously parameterized limit. If a higher frequency is present at the
input, pulses will be rejected or the trigger pulse queue is filled if activated. The maximum frequency valve
ensures that the output-pulses will not exceed the maximum possible frequency which can be processed
by the camera.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 21

Figure 6.4. Trigger Pulse Processing Block Diagram

3. Output Pulse Form Generators:

After the input pulses have been processed, they are feed into four optional pulse form generators. These
pulse form generators define the signal width, a delay and a possible downscale. The four pulse form
generators can arbitrarily allocated to the outputs which makes the trigger system capable for numerous
applications such as muliple flash light control, varying camera exposure times etc.

Figure 6.5. Trigger Pulse Processing Block Diagram

4. Trigger Output:

The last block is related to the trigger outputs. The pulse form generator signals can be output at the digital
outputs and directly to the camera. Moreover, they can be monitored using registers and events.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 22

Figure 6.6. Trigger Output Block Diagram

6.2. Digital Input/Output Mapping
The frame grabber imaFlex CXP-12 Quad for this applet supports eight digital inputs and eight digital outputs.
These inputs and outputs are present on the 34pin flat cable connector of the frame grabber which can be
connected to one of the trigger IO add on boards.

The eight inputs have the indices 0 to 7. In the documentation of the trigger IO boards and imaFlex CXP-12
Quad frame grabber the allocation of these inputs to pins is described.

The eight outputs also have indices from 0 to 7. Again for the mapping of pins check the documentation of the
IO board and frame grabber hardware. The available outputs can arbitrarily allocated to a trigger module or
directly to a GPI. See Section 6.5.12, 'DigitalOutput' for explanation.

6.3. Event Overview
In programming or runtime environments, a callback function is a piece of executable code that is passed as
an argument, which is expected to call back (execute) exactly that time an event is triggered.

For a general explanation on events see Event.

In the following, a list of all events of the trigger system is presented. Detailed explanations can be found in
the respective module descriptions. The events are available for all cameras. Replace CAM0 by the respective
camera index if necessary.

• Line0RisingEdge, Line0FallingEdge to Line7RisingEdge, Line7FallingEdge and LineFront0RisingEdge,
LineFront0FallingEdge to LineFront3RisingEdge, LineFront3FallingEdge

Trigger input events. Events can be generated for all digital trigger inputs. The events are triggered by either
rising or falling signal edges.

• LineFront0RisingEdge, LineFront0FallingEdge to LineFront3RisingEdge, LineFront3FallingEdge

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 23

Trigger input events on the Front GPIs. Events can be generated for all digital trigger inputs. The events are
triggered by either rising or falling signal edges.

• TriggerExceededPeriodLimits

The event is generated for each lost input trigger pulse.

• TriggerQueueFilllevelThresholdOn and TriggerQueueFilllevelThresholdOff

The trigger queue exceeded the upper "on" threshold or got less than the "off" threshold.

• AcquisitionTrigger

Events for trigger output.

• FrameTriggerMissed

The event is generated for a missing camera frame response.

6.4. Trigger Scenarios
In the following, trigger sample scenarios are presented. These scenarios will help you to use the trigger system
and facilitate easy adaptation to own requirements.

The scenarios show real life configurations. They explain the requirements, illustrate the inputs and outputs
and list the required parameters and their values.

6.4.1. Internal Frequency Generator / frame grabber Controlled

Let's start the trigger system examples with a simple scenario. In this case we simply want to control the
frequency of the camera's image output and the exposure time with the frame grabber. Assume that there is
no additional external source for trigger events and we do not need to control any flash lights. Thus the frame
grabber's trigger system has to control the frequency of the trigger pulses and the exposure time.

Figure 6.7 shows the hardware setup. Only the camera connected to the frame grabber is required.

Figure 6.7. Generator Controlled Trigger Scenario

CoaXPress
RAM

RAM

FPGA FPGA

To put this scenario into practice, you will need to set your camera into an external trigger mode. Consult the
vendor's user manual for more information.

After the camera is set to an external trigger mode, the exposure period and the exposure time can be controlled
by one of the camera control inputs. Use the CXP cable as trigger source. The names of the camera trigger
modes vary. You will need to use an external trigger mode, where the exposure period is programmable. If you
also want to define the exposure time using the frame grabber, the respective trigger mode needs to support
this, too.

In the following, a waveform is shown which illustrates the frame grabber trigger output. Most cameras will
start the acquisition on the rising or falling edge of the signal. The exposure time is defined by the length of the
signal. Note that some cameras use inverted inputs. In this case, the signal has to be 'low active' instead of
being 'high active'. Thus the frame grabber output has to be inverted which is explained later on.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 24

Figure 6.8. Waveform of Generator Controlled Trigger Scenario

CC1 output

exposure time =
FG_TRIGGER_PULSEFORMGEN0_WIDTH

exposure period =
1 / FG_TRIGGER_FRAMESPERSECOND

After hardware setup and camera configuration we can start parameterizing the frame grabber's trigger system.

In the following, all required parameters and their values are listed.

• AreaTriggerMode = Generator

First, we will need to configure the trigger system to use the internal frequency generator.

• TriggerOutputFrequency = 10

Next, the output frequency is defined. In this example, we use a frequency of 10Hz.

• TriggerPulseFormGenerator0Width = 200

So far, we have set the trigger system to generate trigger pulses at a rate of 10Hz. However, we have not
set the pulse form of these pulses i.e. the signal length or signal width. The frame grabber's trigger system
includes four pulse form generators which allow to set the signal width, a delay and a downscaling. In our
example, we only have one output and therefore, we will need only one pulse form generator, respectively
pulse form generator 0. Moreover, only the signal length has to be defined, a delay and a downscaling is
not required.

Suppose, that we require an exposure time of 200µs. Thus, we will set the parameter to value 200 since
the unit is µs.

• CxpLinkTrigger0Source = PulseGeneratorRisingEdge and CxpLinkTrigger1Source =
PulseGenerator0FallingEdge

The only thing left to do is to allocate the output of pulse form generator 0 to the camera trigger output.

Now, the trigger is fully configured. However the trigger signal generation is not started yet. Set parameter
TriggerState to Active to start the system. Of course, you will also need to start your image acquisition. It is
up to you if you like to start the trigger generation prior or after the acquisition has been started. If the trigger
system is started first, the camera will already send images to the frame grabber. These images are discarded
as no acquisition is started.

You will now receive images from your camera. Change the frequency and the signal width to see the influence
of these parameters. A higher frequency will give you a higher frame rater. A shorter exposure time will make
the images 'darker'. You will realize, that it is not possible to set an exposure time which is longer than the
exposure period. In this case, writing to the parameter will result in an error. Therefore, the order of changing
parameter values might be of importance. Also be careful to not select a frequency or exposure time which
exceeds the camera's specifications. In this cases you will loose trigger pulses, as the camera cannot progress
them. Get the maximum ranges from the camera's specification sheets.

To stop the trigger pulse generation, set parameter TriggerState to SyncStop. The trigger system will then
finalize the current pulse and stop any further output until the system is activated again. The asynchronous
stop mode is not required in this scenario.

6.4.2. External Trigger Signals / IO Triggered

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 25

In the previous example we used an internal frequency generator to control the camera's exposure. In this
scenario, an external source will define the exact moment of exposure. This can be, for example, a light barrier
as illustrated in the following figure. Objects move in front of the camera, a light barrier will define the moment,
when an object is located directly under the camera. In practice, it might not be possible to locate the light
barrier and the camera at the exact position. Therefore, a delay is required which delays the pulses from the
light barrier before using them to trigger the camera. Moreover, in our scenario, we assume that a flash light
has to be controlled by the trigger system, too.

Figure 6.9. External Controlled Trigger Scenario

An exemplary waveform (Figure 6.10) provides information on the input signal and shows the desired output
signals. The input is shown on top. As you can see, the falling edge of the signal defines the moment which
is used for trigger generation. Thus, the signal is 'low active'. Mind that the pulse length of any external input
is ignored (second row), only falling edges are considered.

The output to the camera is shown in the third row. Here we can see an inserted delay. This delay will
compensate the positions of the light barrier and the camera. The signal width at the trigger camera output
defines the exposure time, if the camera is configured to the respective trigger mode. Control of the flash light
is done using trigger output 0. Again, a delay is added. Depending on the requirements of the flash light, this
delay has to be shorter or longer than the trigger camera output delay. Similarly, the required pulse length
varies for different hardware.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 26

Figure 6.10. Waveform of External Trigger Scenario

input 2

input frequency < FG_TRIGGER_FRAMESPERSECOND

input pulse

CC1

delay 0

width 0

output 0
e.g. flash light

e.g. light barrier

delay 1

width 1

Before parameterizing the applet, ensure that your camera has been set to an external trigger mode. Check
the previous trigger scenario for more explanations.

In this example, we have to parameterize the trigger mode, the input source and we have to configure two
trigger outputs.

• AreaTriggerMode = External

In external trigger mode, the trigger system will not use the internal frequency generator. External pulses
control the output of trigger signals. This requires the selection of an input source and the configuration of
the input polarity.

• TriggerInSource = GPITriggerSource2

Select the trigger input by use of this parameter. You can choose any of the inputs. If you use a multi-camera
applet, cameras can share same sources.

• TriggerInPolarity = LowActive

For the given scenario, we assume that a trigger is required on a falling edge of the input signal.

• TriggerOutputFrequency = 500

Do not forget to set this parameter. For any use of the trigger system, the correct parameterization of this
parameter is required. If you do not use the internal frequency generator, this parameter defines the maximum
allowed trigger pulse frequency. In other words, you can set a limit with this parameter. The limiting frequency
could be the maximum exposure frequency of the camera.

The advantage of setting this limit is the information on lost trigger signals. Let's suppose the frequency
of the external trigger signals will get to high for the camera or the applet. In this case, you will loose
images or obtain corrupted images. If you have set a correct frequency limit in the trigger system, the
trigger system will provide you with information of these exceeding line periods. This information can be
obtained by register polling or you can use the event system. Thus you always have the possibility to prevent
your application of getting into a bad, probably undefined state and you will always get the information of
when and how many pulses got lost. Check the explanations of parameters TriggerOutputFrequency and
TriggerExceededPeriodLimits as well as the event TriggerExceededPeriodLimits for more information.

More information on error detection and analysis can be found in scenario Section 6.4.9, 'Hardware System
Analysis and Error Detection / Trigger Debugging'

The trigger system also allows the queuing of trigger pulses if you have a short period of excess pulses. We
will have a look at this in a later scenario.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 27

In our example, we set the maximum frequency to 500 frames per second. If you do not want to use this
feature, set TriggerOutputFrequency to a high value, such as 1MHz.

• TriggerPulseFormGenerator0Width = 200

So far, we have set the trigger system to accept external signals and generate the trigger pulses out of these
signals. Next, we need to output these pulses. For realization, we need to define the pulse form of the output
signals. Just as shown in the previous scenario, we use pulse form generator 0 for generating the pulse form
of the trigger signals. We set a pulse width of 200µs.

• TriggerPulseFormGenerator0Delay = 50

In addition to the signal width, a delay will give us the possibility to delay the output as the light barrier might
not be positioned at the exact location. For this fictitious scenario we use a delay of 50µs.

• TriggerPulseFormGenerator1Width = 250

In addition to the trigger output we want to control a flash light. We use pulse form generator 1 for this purpose
and set the signal width to 250µs.

• TriggerPulseFormGenerator1Delay = 25

A delay for the flash output is set, too.

• CxpLinkTrigger0Source = PulseGeneratorRisingEdge and CxpLinkTrigger1Source =
PulseGenerator0FallingEdge

Finally, we have to allocate the camera trigger output with the pulse form generator 0.

• TriggerOutSelectFrontGPO0 = PulseGenerator1

The flash light, connected to output 0 has to be allocated to pulse form generator 1.

• TriggerOutSelectFrontGPO1 = PulseGenerator0

Let's assume that it is necessary to measure the camera trigger output using a logic analyzer. Hence, we
allocate output 1 to pulse form generator 0 as well.

The trigger is now fully configured. Just as described in the previous scenario, you can now start the acquisition
and activate the trigger system using parameter TriggerState.

You will now receive images from the camera for each external trigger pulse. Compare the number
of external pulses with the generated trigger signals and the received images for verification. Use
parameter TriggerInStatisticsPulseCount of category Trigger Input -> Input Statistics and parameter
TriggerOutStatisticsPulseCount of the output statistics parameters to get the number of input pulses and
generated pulses. You can compare these values with the received image numbers.

6.4.3. Control of Three Flash Lights

This scenario is similar to the previous one. We use an external trigger to control the camera and a flash light.
But in difference, we want to get three images from one external trigger pulse. Each image out of the sequence
of three images has to use a different light source. Thus, in this scenario we will learn on how to use a trigger
pulse multiplication and on how to control three lights connected to the frame grabber.

The application idea behind this scenario is that an object is acquired using different light sources. This could
result in a HDR image or switching between normal and infrared illumination. The following figure illustrates the
hardware setup. As you can see, we have three light sources this time. The objects move in front of the camera.
The light barrier will provide the information on when to trigger the camera. Let's suppose that the objects stop
in front of the camera or the movement is slow enough to generate three images with the different illuminations.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 28

Figure 6.11. External Controlled Trigger Scenario

Before looking at the waveform, let's have a look at our fictitious hardware specifications.

Table 6.1. Fictitious Hardware Specifications of Trigger Scenario Three Light Sources

Element Limit
Object Speed Max. 100 Objects per Second

Minimum Camera Exposure Time 50µs

Minimum Camera Frame Period 70µs

The object speed is 100 objects per second. The minimum camera exposure time is 50µs at a minimum camera
frame period of 70µs. Thus we only need 210µs to acquire the three images. The following waveform shows the
input and output signals, as well as the multiplied input signals. The first row shows the input. Each falling edge
represents the light barrier event as marked in the second row. The third row shows the multiplied input pulses
with a gap of 70µs between the pulses. The trigger signal is generated for each of these pulses, however the
trigger flash outputs 0, 1 and 2 are downscaled by three and a delay is added.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 29

Figure 6.12. Waveform of External Trigger Scenario Controlling Three Flash Lights

input 2

max. input frequency = 5 objects per second

input pulse

CC1

output 0
e.g. red light

e.g. light barrier

min. exp. time = 50us

min. cam line rate = 70us

multiplied input

output 1
e.g. green light

output 2

Downscale = 3
Phase = 0

Downscale = 3
Phase = 1

Downscale = 3
Phase = 2

e.g. blue light

Parameterization is similar to the previous example. In contrast, this time, we have to set the trigger pulse
sequencer using a multiplication factor and we have to use the pulse form generators.

• AreaTriggerMode = External

• TriggerInSource = 2

• TriggerInPolarity = LowActive

• TriggerMultiplyPulses = 3

The parameter specifies the multiplication factor of the sequencer. For each input pulse, we have to generate
three internal pulses. The period time of this multiplication is defined by parameter TriggerOutputFrequency

• TriggerOutputFrequency = 14285

This time, the maximum frames per second correspond to the gap between the multiplied trigger pulses. We
need a gap of 70µs which results in a frequency of 14285Hz.

• TriggerPulseFormGenerator0Width = 50

Again, we use pulse form generator 0 for trigger signal generation. The pulse width is 50µs. A delay or
downscaling is not required.

• TriggerPulseFormGenerator1Width = 50

The pulse width for the flash lights depends on the hardware used. We assume a width of 50µs in this
example.

• TriggerPulseFormGenerator2Width = 50

• TriggerPulseFormGenerator3Width = 50

• TriggerPulseFormGenerator1Downscale = 3

The flash outputs need a downscale of three. This is the same for all flash pulse form generators.

• TriggerPulseFormGenerator2Downscale = 3

• TriggerPulseFormGenerator3Downscale = 3

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 30

• TriggerPulseFormGenerator1DownscalePhase = 0

We use the phase shift for delaying the downscaled signals of the outputs. You could use the delay instead,
but any frequency change will require a change of the delay as well. The phase shift of pulse form generator
1 i.e. the first flash light is 0.

• TriggerPulseFormGenerator2DownscalePhase = 1

The phase shift of pulse form generator 2 i.e. the second flash light is 1.

• TriggerPulseFormGenerator3DownscalePhase = 2

The phase shift of pulse form generator 3 i.e. the third flash light is 2.

• CxpLinkTrigger0Source = PulseGeneratorRisingEdge and CxpLinkTrigger1Source =
PulseGenerator0FallingEdge

The output allocation is as usual.

• TriggerOutSelectFrontGPO0 = PulseGenerator1

• TriggerOutSelectFrontGPO1 = PulseGenerator2

Start the trigger system using parameter TriggerState as usual. You will notice that you get thrice the number
of images from the frame grabber than external trigger pulses have been generated by the light barrier. Equally
to the previous example, check for exceeding line periods at the input when you run your application or ensure
that your external hardware will not generate the input pulses with an exceeding frequency.

Keep in mind to start the acquisition before activating the trigger system. This is because you will receive three
images for one external trigger pulse. If you start the acquisition after the trigger system, you cannot ensure
that the first transfered image is the first image out of a sequence.

6.4.4. Software Trigger

The previous examples showed the use of the internal frequency generator and the use of external trigger
pulses to trigger your camera and generate digital output signals. Another trigger mode is the software trigger.
In this mode, you can control the generation of each trigger pulse using your software application. To use
the software triggered mode, set parameter AreaTriggerMode to Software. Next, configure the pulse form
generators and the outputs as usual and start the trigger system (set TriggerState to Active) and the acquisition.
Now, you can generate a trigger pulse by writing value '1' to parameter SendSoftwareTrigger i.e. each time you
write to this parameter, a trigger pulse is generated. The relevant blocks of the trigger system are illustrated
in the following figure.

Keep in mind that the time between two pulses has to be larger than 1 / TriggerOutputFrequency as this will
limit the maximum trigger frequency. The trigger system offers the possibility to check if a new software trigger
pulse can be accepted i.e. the trigger system is not busy anymore. Read parameter SoftwareTriggerIsBusy to
check it's state. While the parameter has value Busy, writing to parameter SendSoftwareTrigger is not allowed
and will be ignored. You should always check if the system is not busy before writing a pulse. To check if you
lost a pulse, read parameter TriggerExceededPeriodLimits.

In some cases, you might want to generate a sequence of pulses for each software trigger. To do this,
simply set parameter TriggerMultiplyPulses to the desired sequence length. Now, for every software trigger
pulse written to the trigger system, a sequence of the define length with a frequency defined by parameter
TriggerOutputFrequency is generated. Again, the system cannot accept further inputs while a sequence is
being processed.

Let's have a look at some flow chart examples on how to use the trigger system in software triggered mode.
The flow charts visualize the steps of a fictitious user software implementation. In the first example, we simply
generate single software trigger pulses using parameter SendSoftwareTrigger. When the applet receives this
pulse, it will trigger the camera. The camera will send an image to the frame grabber which will be processed

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 31

there and will be output to the PC via DMA transfer. In the meantime, the users software application will wait
for any DMA transfers. After the application got the notification that a new image has been fully tranferred to
the PC it will send a new software trigger pulse and the frame grabber and camera will start again generating
an image. Our software application will now have the time to process the previously received image until it is
waiting for a new transfer. Thus, the software can process images while image generation is in progress. Of
course, you can first process your images and afterwards generate a new trigger pulse, as well. So the steps
for a repeating sequence are: Generate a SW trigger pulse, wait for image, generate a SW trigger pulse, wait
for image. The flowchart of this example can be found in the following figure.

Figure 6.13. Flowchart of Software Application Using the Software Trigger

Start

Trigger System Configuration:
- FG_ATREATRIGGERMODE = ATM_SOFTWARE
- FG_TRIGGER_FRAMESPERSECOND = 100
- FG_TRIGGER_PULSEFORMGEN0_WIDTH = 200
- Camera Link: FG_CCSEL0 = CC_PULSEGEN0
 CXP/CLHS: FG_TRIGGERCAMERA_OUT_SELECT

- start Acquisition
- FG_TRIGGERSTATE = TS_ACTIVE

Send initial Software Trigger:
FG_SENDSOFTWARETRIGGER = 1

Wait for new Image

Get Image and
Process Data

(User Application)

Send Software Trigger:
FG_SENDSOFTWARETRIGGER = 1

All Images Processed?

Stop

(optional: control external hardware
and prepare for new image)

Applet can now accept software trigger pulses
and will accept data from camera

- trigger system will send a trigger pulse to the camera
- camera will send image data

- image data is processed by Applet and send to PC

The image generation is now in progress. In the
meantime the user-application can process the previous image

NO

YES

PC received full image data
-> a new trigger pulse can now be generated

In the sample application shown above, it is ensured that the trigger system is not busy after you received the
image. Therefore, we do not need to check for the software trigger busy flag in this example. One drawback of
the example is that we might not acquire the frames at the maximum speed. This is because we have to wait

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 32

for the full transfer of images before generating a new trigger pulse. Cameras can accept new trigger pulses
while they transfer image data. The next example will therefore use the trigger sequencer.

The next example uses two threads. One thread for trigger generation and one thread for image acquisition
and processing. In comparison to the previous example, we use the trigger sequencer for pulse multiplication
and we will have to use the busy flag. This will allow an acquisition at a higher frame rate.

Figure 6.14. Flowchart of Software Application Using the Software Trigger with a Sequencer

Start

Trigger System Configuration:
- FG_ATREATRIGGERMODE = ATM_SOFTWARE
- FG_TRIGGER_FRAMESPERSECOND = 100
- FG_TRIGGER_MULTIPLY_PULSES = 1000
- FG_TRIGGER_PULSEFORMGEN0_WIDTH = 200
 Camera Link: FG_CCSEL0 = CC_PULSEGEN0
 CXP/CLHS: FG_TRIGGERCAMERA_OUT_SELECT

- start Acquisition
- FG_TRIGGERSTATE = TS_ACTIVE

Send Software Trigger:
FG_SENDSOFTWARETRIGGER = 1

Wait until
FG_SOFTWARETRIGGER_IS_BUSY

= IS_NOT_BUSY

increment Counter

Max Image
Reached?

Stop

(optional: control external hardware
and prepare for new image)

Start

Wait for next Image

Get Image and
Process Data

(User Application)

Max Image
Reached?

Stop

Main Thread Image Acquisition Thread

Start Image
Acquisition Thread

The trigger system will generate 1000 trigger
pulses from the input pulse and send them to

the camera at the specified frame rate.

The trigger system can now accept
new trigger pulses

YES

Applet can now accept software trigger pulses
and will process data from camera

NO

PC received full image data

NO

YES

The main thread will configure and start the trigger system and the acquisition. For each software trigger pulse
we send to the frame grabber, 1000 pulses are generated and send to the camera at the framerate specified by
TriggerOutputFrequency. After sending a software trigger pulse to the frame grabber we wait until the software
is not busy anymore by polling on register SoftwareTriggerIsBusy. To control the number of generated trigger

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 33

pulses we count each successful sequence generation. If more images are required we can send another
software trigger pulse to the frame grabber to start a new sequence.

The second thread is used for image acquisition and image data processing. Here, the software will wait for
new incoming images (Use function Fg_getLastPicNumberBlockingEx() for example) and process the received
images. The thread can exit if the desired number of images have been acquired and processed.

6.4.5. Software Trigger with Trigger Queue

To understand the following scenario you should have read the previous scenario first. In the following we
will have a look at the software trigger once again. This time, we use the trigger queue. The trigger queue
enables the buffering of trigger pulses from external sources or from the software trigger and will output these
pulses at the maximum allowed frequency specified by TriggerOutputFrequency. Therefore, we can write to
SendSoftwareTrigger multiple times even if the trigger system is still busy. Parameter SoftwareTriggerIsBusy
will only have value Busy if the queue is full. Instead of writing multiple times to SendSoftwareTrigger you can
directly write the number of required pulses to the parameter.

The trigger queue can buffer 2040 sequence pulses. Thus if you have a certain sequence length of N pulses
and currently 200 pulses in the queue, the trigger system can store additional 1840 remaining pulses. You can
check the fill level by reading parameter TriggerQueueFillLevel.

In the following flow chart you can see a queue fill level minimum limit of 10 pulses. In our supposed application
we will check the queue fill level and compare it with our limit. If less pulses are in the queue, we generate
a new software trigger pulse. Thus, on startup, the queue will fill-up until it contains 10 pulses. We count the
software trigger pulses send to the trigger system. Multiplied with our sequence length, we can obtain the
number of pulses which will be send to the camera. If enough pulses have been generated, we can stop the
trigger pulse generation.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 34

Figure 6.15. Flowchart of Software Application Using the Software Trigger with Trigger Queue

Start

Trigger System Configuration:
- FG_ATREATRIGGERMODE = ATM_SOFTWARE
- FG_TRIGGER_FRAMESPERSECOND = 100
- FG_TRIGGER_MULTIPLY_PULSES = 1000
- FG_TRIGGER_QUEUE_MODE = FG_ON
- FG_TRIGGER_PULSEFORMGEN0_WIDTH = 200
- Camera Link: FG_CCSEL0 = CC_PULSEGEN0
 CXP/CLHS: FG_TRIGGERCAMERA_OUT_SELECT

- start Acquisition
- FG_TRIGGERSTATE = TS_ACTIVE

Send Software Trigger:
FG_SENDSOFTWARETRIGGER = 1

Get queue fill level:
FG_TRIGGERQUEUE_FILLLEVEL

Max Image Reached? Stop

Start

Wait for next Image

Get Image and
Process Data

(User Application)

Max Image
Reached?

Stop

Main Thread Image Acquisition Thread

Start Image
Acquisition Thread

Fill level < 100

short delay

Increment Counter

wait until queue
is empty

NO

PC received full image data

NO

YES

YES NO

The trigger system will generate 1000 trigger
pulses from the input pulse and send them to

the camera at the specified frame rate.

YES

When having a look at the waveform (Figure 6.16) we can see the initialization phase where the queue is filled.
After fill level value 10 has been reached, no more software trigger pulses are written to the applet. The system
will now continue the output of trigger pulses. As our sequence length is 1000 pulses we have to wait for 1000
pulses to be generated until a change in the fill level will occur. After the 1000th pulse has been completely
generated, the fill level will change to 9. This will cause the generation of another software trigger pulse by our
sample application which will cause a fill level of 10 again.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 35

Figure 6.16. Waveform Illustrating Software Trigger with Queue Example"

FG_SENDSOFTWARETRIGGER

FG_TRIGGERQUEUE_FILLLEVEL 0 1 2 3 4 5 6 7 8 9 10 910 10

CC1

When using the trigger queue, the stopping of the trigger system is of interest. If you set parameter TriggerState
to SyncStop, the trigger system will stop accepting inputs such as software trigger pulses, but it will complete
the trigger pulse generation until the queue is empty and all pulses are fully output. You can immediately cancel
the pulse generation by setting the TriggerState to AsyncStop.

6.4.6. External Trigger with Trigger Queue

Of course, we can use the trigger queue with external triggers, too. This will give us a possibility to buffer 'jumpy'
external encoders or any other external trigger signal generators. Let's suppose an external encoder which is
configured to generate trigger pulses with a frequency of 50Hz and a camera which can be run at a maximum
frequency of 52Hz. Thus, we set parameter TriggerOutputFrequency to 52Hz. Now assume that the external
hardware is a little 'jumpy' and the 50Hz is just an average. So if we have inputs with a frequency higher than
52Hz we will loose at least one pulse. You can check this using the trigger lost events or by reading parameter
TriggerExceededPeriodLimits.

Now let's have a look at the same scenario if the queue is enabled. If it is enabled, we can buffer trigger pulses.
Thus, we can buffer the exceeding input frequency and output the pulses at the maximum camera trigger
frequency which is 52Hz in our example. After the input frequency is reduced, the queue will get empty and the
pulse output is synchronous to the input again. Note that the delay might result in images with wrong content
such as 'shifted' object positions.

To enable the queue, just write value On to TriggerQueueMode.

The following waveform illustrates the input signal, the queue fill level and the output signal. At the beginning,
the gap between the first two input signals is 20ms i.e. the frequency is less than 52Hz. Thus, the queue will not
fill with pulses and the trigger system will directly output the second pulse. Now, the gap between the second
and the third as well as the fourth pulse is less than 19.2ms and therefore, the trigger system will delay the
output of these pulses to have a minimum gap of 19.2ms. During this period, the queue fill level will increment to
value 1 for short periods. The gap between the fourth and the following input pulses is sufficiently long enough,
however, the system will have to delay these pulses, too.

Figure 6.17. Using External Trigger Signal Sources together with the Trigger Queue

Input

FG_TRIGGERQUEUE_FILLLEVEL 0 1

Output

1 10 0 0 0 0 0 0

20m
s
≙

50H
z

18.5m
s
≙

54H
z

18.5m
s
≙

54H
z

20m
s
≙

50H
z

20m
s
≙

50H
z

20m
s
≙

50H
z

19.2m
s
≙

52H
z

20m
s
≙

50H
z

19.2m
s
≙

52H
z

19.2m
s
≙

52H
z

19.2m
s
≙

52H
z

20m
s
≙

50H
z

Note that the trigger lost event and TriggerExceededPeriodLimits will only be set if the queue is full i.e. in
overflow condition.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 36

6.4.7. Bypass External Trigger Signals

When external trigger signals are used, the duty cycle i.e. signal width or signal length will always be ignored.
Only the rising or falling edge depending on the polarity settings is considered. However, you can bypass an
external source directly to an output. For example, you can bypass an external source to the camera which
allows you to control the exposure time with the external source. Mind that you will bypass the trigger core
system and therefore, no frequency checks or downscales can be performed.

Use the output select parameters for camera control or digital outputs to select a bypass source. These are
for example:

• CxpLinkTrigger0Source = BYPASS_FRONT_GPI_0_RISING and CxpLinkTrigger1Source =
BYPASS_FRONT_GPI_0_FALLING

• TriggerOutSelectFrontGPO0 = BYPASS_FRONT_GPI_1

6.4.8. Multi Camera Applications / Synchronized Cameras

A basic application is that multiple cameras at one or more frame grabbers are connected to the same trigger
source. If all cameras have to acquire images for every trigger pulse. Simply connect the trigger source to all
frame grabbers and set the same trigger configuration for all cameras. This applets supports up to 4 cameras.
Set the same parameters for all cameras. Multiple trigger systems are allowed to share the same trigger input,
so you do not have to connect your trigger source to 4 inputs.

If you do not have an external trigger source, but use the generator or the software trigger you can synchronize
the triggers to ensure camera exposures at the same moment. Simply output the camera control signal on
a digital trigger output and connect this output to a digital input of other frame grabbers which have to be
synchronized with the master. In the slave applets bypass the input to the camera control outputs. In addition
to that, this applet supports up to 4 cameras and includes a special trigger mode called Synchronized. This
mode can be chosen for all camera ports except the first one. The "slave" cameras use trigger pulses at the
output of the first camera as input source. However, users will still have to configure the pulse form generators
in the trigger system of the slave cameras and will still have to allocate them to the trigger outputs.

Arbitrary Output Allocation
In multiple camera applets you can also select another camera trigger module source. For example,
CXP trigger source for camera 1 can use CamAPulseGenerator0.

6.4.9. Hardware System Analysis and Error Detection / Trigger Debugging

The Basler trigger system includes powerful monitoring possibilities. They allow a convenient and efficient
system analysis and will help you to detect errors in your hardware setup and wrong parameterizations.

Let's have a look at the simple external trigger example once again. Assume that you have set up all devices
and have fully configured the applet. You start the system and receive images. Unfortunately, the number of
acquired images or the framerate is not as expected. This means, at some point trigger signals or frames got
lost. To analyze the error, let's have a look at the monitoring applet registers.

• Trigger Input Statistics

The parameters of the trigger input statistics category allow an analysis of the external trigger pulses.
Parameter TriggerInStatisticsFrequency performs a continuous frequency measurement of the input signals.
Compare this value with the expected trigger input frequency. If the measured frequency is much higher or
lower than the expected frequency, check your external hardware. Also check if the correct trigger input has
been chosen by parameter TriggerInSource and if the pulse width of the input is long enough to be detected
by the hardware.

To validate a constant input frequency, the trigger system will also show the maximum
and minimum detected frequencies using parameters TriggerInStatisticsMaximumFrequency and

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 37

TriggerInStatisticsMinimumFrequency. On startup, you will have a very low frequency as no external
pulses might have been detected so far. Therefore, you have to clear the measurement using parameter
TriggerInStatisticsMinMaxFrequencyClear first. If you detect an unwanted deviation from the expected values
or the difference between the minimum and maximum frequency is comparably high, your external trigger
generating hardware might be 'jumpy', skips pulses or is 'bouncing' which causes pulse multiplication. In this
case, you might be able to compensate the problem using a higher debouncing value, set a lower maximum
allowed frequency (see Section 6.4.2, 'External Trigger Signals / IO Triggered') or use the trigger queue (see
Section 6.4.6, 'External Trigger with Trigger Queue').

Another feature of the input statistics module is the pulse counting. This feature can be used to compare
the number of input pulses with the output pulses and acquired images. Read the pulse count value from
parameter TriggerInStatisticsPulseCount. To ensure a synchronized counting of the input and any output
pulses and images you should clear the pulse counter before generating external trigger inputs.

• Trigger Output Statistics

A pulse counter is connected to the trigger output, too. Here you can select one of the pulse
form generators using parameter TriggerOutStatisticsSource and read the value with parameter
TriggerOutStatisticsPulseCount. Reset the pulse counter using TriggerOutStatisticsPulseCountClear.

Use the pulse count value to compare it with the input pulse counter. If the values vary, pulses
in the frame grabber have been discarded. This can happen if the input frequency is higher than
the maximum allowed frequency specified by parameter TriggerOutputFrequency. If this happens, flag
TriggerExceededPeriodLimits will be set. Moreover, if the pulse counter values dramatically differ, ensure
that no trigger multiplication and/or downscaling has been set. Check parameters TriggerInDownscale,
TriggerMultiplyPulses and the downscale parameters of the pulse form generators.

It is also possible to count the input and output pulses with the input events and the output event
AcquisitionTrigger.

• Camera Response Check

Trigger pulses might get lost in the link to the camera or the trigger frequency is to high to be processed by
the camera. In this case, the number of frames received by the frame grabber differs from the trigger pulses
sent. For this error, the trigger system includes the missing camera frame response detection module. The
module can detect missing frames and generate an event for each lost frame or set a register. Check Section
6.5.12.3, 'OutStatistics' for more information and usage.

• Acquired Image Compare

Of course, it is also possible to count the number of acquired images i.e. the number of DMA transfers and
compare them with the generated trigger pulses. If the values differ, you might have lost trigger pulses in
the camera. In this case, check that the trigger frequency is not to high for the camera. Ensure that you do
not run the applet in overflow state, where images can get lost in the applet. If the applet is run in overflow,
check the maximum bandwidths of the applet. A smaller region of interest might solve the problems.

For every monitoring values, check the maximum and minimum ranges of the parameters. If pulse counters
reached their maximum value, they will reset and start from zero.

6.5. Parameters

6.5.1. AreaTriggerMode
The area trigger system of this applet can be run in three different operation modes.

• Generator

An internal frequency generator at a specified frequency will be used as trigger source. All digital trigger
inputs and software trigger pulses will be ignored.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 38

• External

In this mode, one of the digital inputs is used as trigger source i.e. you can use an external source for trigger
generation.

• Software

In software triggered mode, you will need to manually generate the trigger input signals. This has to be done
by writing to an applet parameter.

• Synchronized

The synchronized mode is not available for the first camera. If the area trigger mode of a process (Process)
is set to synchronized mode, the trigger source of the process will be the output of the previous process. For
example, if the area trigger mode of process 1 is set to synchronized mode, the trigger system is sourced
by the output of process 0.

In Section 6.4.8, 'Multi Camera Applications / Synchronized Cameras' an example of the usage is presented.
The block diagram in Figure 6.2, 'Trigger System' illustrates the sources of the synchronize outputs and
inputs.

Free-Run Mode
If you like to use your camera in free run mode you can use any of the modes described above.
The camera will ignore all trigger pulses or, if required, you can disable the output or deactivate
the trigger using parameter TriggerState.

Allowed Frequencies
Mind the influence of parameter TriggerOutputFrequency in external and software triggered mode.
Always set this parameter for these modes.

Table 6.2. Parameter properties of AreaTriggerMode

Property Value
Name AreaTriggerMode
Display Name Area Trigger Mode
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values Generator Generator

External External
Software Software
Synchronized Synchronized

Default value Generator

Example 6.1. Usage of AreaTriggerMode

/* Set */ AreaTriggerMode = Generator;
/* Get */ value_ = AreaTriggerMode;

6.5.2. TriggerState

The area trigger system is operating in three trigger states. In the 'Active' state, the module is fully enabled.
Trigger sources are used, pulses are queued, downscaled, multiplied and the output signals get their
parameterized pulse forms. If the trigger is set into the 'Sync Stop' mode, the module will ignore further input
pulses or stop the generation of pulses. However, the module will still process the pulses in the system. This

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 39

means, a filled queue and the sequencer will continue processing the pulses and furthermore, the pulse form
generators will output the signals according to the parameterized parameters. Finally, the 'Async Stop' mode
asynchronously and immediately stops the full trigger system for the respective camera process. Note that this
stop might result in output signals of undefined signal length as a current signal generation could be interrupted.
Also note that a restart of a previously stopped trigger i.e. switching to the 'Active' state will clear the queue
and the sequencer.

Table 6.3. Parameter properties of TriggerState

Property Value
Name TriggerState
Display Name Trigger State
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values Active Active

AsyncStop Async Stop
SyncStop Sync Stop

Default value SyncStop

Example 6.2. Usage of TriggerState

/* Set */ TriggerState = SyncStop;
/* Get */ value_ = TriggerState;

6.5.3. TriggerOutputFrequency

This is a very important parameter of the trigger system. It is used for multiple functionalities.

If you run the trigger system in 'Generator' mode, this parameter will define the frequency of the generator. If
you run the trigger system in 'External' or 'Software Trigger' operation mode, this parameter will specify the
maximum allowed input frequency. Input frequencies which exceed this limit will cause the loss of the input
pulse. To notify the user of this error, a read register contains an error flag or an event is generated. However, if
the trigger queue is enabled, the exceeding pulses will be buffered and output at the maximum frequency which
is defined by TriggerOutputFrequency. Thus, the parameter also defines the maximum queue output frequency.
Moreover, it defines the maximum sequencer frequency. The maximum valid value of TriggerOutputFrequency
is limited by CamerasimulatorFramerate in camera simulator mode.

Note that the range of this parameter depends on the settings in the pulse form generators. If you want to
increase the frequency you might need to decrease the width or delay of one of the pulse form generators.

Equation 6.1. Dependency of Frequency and Pulse Form Generators

1

fps
> Max

8
>>>>>>>>>><
>>>>>>>>>>:

MaxfWIDTH0;DELAY0g
DOWNSCALE0

;

MaxfWIDTH1;DELAY1g
DOWNSCALE1

;

MaxfWIDTH2;DELAY2g
DOWNSCALE2

;

MaxfWIDTH3;DELAY3g
DOWNSCALE3

9
>>>>>>>>>>=
>>>>>>>>>>;

• fps = TriggerOutputFrequency

• WIDTH[0..3] = TriggerPulseFormGenerator[0..3]Width

• DELAY[0..3] = TriggerPulseFormGenerator[0..3]Delay

• DOWNSCALE[0..3] = TriggerPulseFormGenerator[0..3]Downscale

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 40

Read the general trigger system explanations and the respective parameter explanations for more information.

Table 6.4. Parameter properties of TriggerOutputFrequency

Property Value
Name TriggerOutputFrequency
Display Name Trigger Output Frequency
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.01455191523

Maximum 3.1249999999999996E7
Stepsize 2.220446049250313E-16

Default value 8.0
Unit of measure Hz

Example 6.3. Usage of TriggerOutputFrequency

/* Set */ TriggerOutputFrequency = 8.0;
/* Get */ value_ = TriggerOutputFrequency;

6.5.4. Trigger Input

The parameters of category Trigger Input are used to configure the input source of the trigger system. The
category is divided into sub categories. All external sources are configured in category external. Category
software trigger allows the configuration, monitoring and controlling of software trigger pulses. In category
statistics the parameters for input statistics are present.

6.5.4.1. External

6.5.4.1.1. TriggerInDebounce

In general, a perfect and steady trigger input signal can not be guaranteed in practice. A transfer using long
cable connections and the operation in bad shielded environments might have a distinct influence on the
signal quality. Typical problems are strong flattening of the digital's signal edges, occurring interferences during
toggling and inducing of short jamming pulses (spikes). In the following figure, some of the influences are
illustrated.

Figure 6.18. Faulty Signal and it's Reconstruction

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 41

The trigger system has been designed to work highly reliable even under problematic signal conditions. An
internal debouncing of the inputs will eliminate unwanted trigger pulses. It is comparable to a hysteresis. Only
signal changes which are constant for a specified time (marked 'L' in the figure) are accepted which makes
the input insensitive to jamming pulses. Also multiple triggering will be effectively disabled, which occurs by
slow signal transfers and bouncing. Set the debounce time according to your requirements in µs. Note that the
debounce time will also be the delay time before the trigger signal can be processed. The settings made for
this parameter affect all digital inputs. The parameter is camera process independent i.e. the latest settings
will apply for all camera inputs.

Table 6.5. Parameter properties of TriggerInDebounce

Property Value
Name TriggerInDebounce
Display Name Input Debounce
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0

Maximum 209.71200000000002
Stepsize 0.0032

Default value 1.0
Unit of measure µs

Example 6.4. Usage of TriggerInDebounce

/* Set */ TriggerInDebounce = 1.0;
/* Get */ value_ = TriggerInDebounce;

6.5.4.1.2. GPI

Parameter GPI is used to monitor the digital inputs of the frame grabber.

You can read the current state of these inputs using parameter GPI. Bit 0 of the read value represents input
0, bit 1 represents input 1 and so on. For example, if you obtain the value 37 or hexadecimal 0x25 the frame
grabber will have high level on it's digital inputs 0, 2 and 5.

Table 6.6. Parameter properties of GPI

Property Value
Name GPI
Display Name Gpi
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 255
Stepsize 1

Example 6.5. Usage of GPI

/* Get */ value_ = GPI;

6.5.4.1.3. FrontGPI

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 42

Parameter FrontGPI is used to monitor the digital inputs of the frame grabber.

You can read the current state of these inputs using parameter FrontGPI. Bit 0 of the read value represents
input 0, bit 1 represents input 1 and so on. For example, if you obtain the value 10 or hexadecimal 0xA the
frame grabber will have high level on it's digital inputs 1 and 3.

Table 6.7. Parameter properties of FrontGPI

Property Value
Name FrontGPI
Display Name Front GPI
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 15
Stepsize 1

Example 6.6. Usage of FrontGPI

/* Get */ value_ = FrontGPI;

6.5.4.1.4. TriggerInSource

To use the external trigger you have to select the input carrying the image trigger signal. Select one of the eight
inputs. eight GPI and four Front GPI inputs. If AreaTriggerMode is not set to external, this parameter will select
the input for the input statistics only.

Table 6.8. Parameter properties of TriggerInSource

Property Value
Name TriggerInSource
Display Name Trigger In Source
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values GPITriggerSource0 GPI Trigger Source 0

GPITriggerSource1 GPI Trigger Source 1
GPITriggerSource2 GPI Trigger Source 2
GPITriggerSource3 GPI Trigger Source 3
GPITriggerSource4 GPI Trigger Source 4
GPITriggerSource5 GPI Trigger Source 5
GPITriggerSource6 GPI Trigger Source 6
GPITriggerSource7 GPI Trigger Source 7
TriggerInSourceFrontGPI0 Trigger In Source Front GPI 0
TriggerInSourceFrontGPI1 Trigger In Source Front GPI 1
TriggerInSourceFrontGPI2 Trigger In Source Front GPI 2
TriggerInSourceFrontGPI3 Trigger In Source Front GPI 3

Default value GPITriggerSource0

Example 6.7. Usage of TriggerInSource

/* Set */ TriggerInSource = GPITriggerSource0;

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 43

/* Get */ value_ = TriggerInSource;

6.5.4.1.5. TriggerInPolarity

For the selected input using parameter TriggerInSource the polarity is set with this parameter.

Table 6.9. Parameter properties of TriggerInPolarity

Property Value
Name TriggerInPolarity
Display Name Trigger In Polarity
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values LowActive Low Active

HighActive High Active

Default value HighActive

Example 6.8. Usage of TriggerInPolarity

/* Set */ TriggerInPolarity = HighActive;
/* Get */ value_ = TriggerInPolarity;

6.5.4.1.6. TriggerInDownscale

If you use the trigger system in external trigger mode, you can downscale the trigger inputs selected by
TriggerInSource. See TriggerInDownscalePhase for more information.

Table 6.10. Parameter properties of TriggerInDownscale

Property Value
Name TriggerInDownscale
Display Name Trigger In Downscale
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 1

Maximum 2147483647
Stepsize 1

Default value 1

Example 6.9. Usage of TriggerInDownscale

/* Set */ TriggerInDownscale = 1;
/* Get */ value_ = TriggerInDownscale;

6.5.4.1.7. TriggerInDownscalePhase

Parameters TriggerInDownscale and TriggerInDownscalePhase are used to downscale external trigger inputs.
The downscale value represents the factor. For example value three will remove two out of three successive
trigger pulses. The phase is used to make the selection of the pulse in the sequence. For the given example,
a phase set to value zero will forward the first pulse and will remove pulses two and three of a sequence of
three pulses. See the following figure for more explanations.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 44

Figure 6.19. Triggerin Dowscale

Input

downscale = 2
phase = 0

downscale = 2
phase = 1

Mind the dependency between the downscale factor and the phase. The value of the downscale factor has
to be greater than the phase!
Table 6.11. Parameter properties of TriggerInDownscalePhase

Property Value
Name TriggerInDownscalePhase
Display Name Trigger In Downscale Phase
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0

Maximum 4294967294
Stepsize 1

Default value 0
Example 6.10. Usage of TriggerInDownscalePhase

/* Set */ TriggerInDownscalePhase = 0;
/* Get */ value_ = TriggerInDownscalePhase;

6.5.4.2. Software Trigger

6.5.4.2.1. SendSoftwareTrigger
If the trigger system is run in software triggered mode (see parameter AreaTriggerMode), this parameter is
activated. Write value '1' to this parameter to input a software trigger. If the trigger queue is activated multiple
software trigger pulses can be written to the frame grabber. They will fill the queue and being processed with
the maximum allowed frequency parameterized by TriggerOutputFrequency.

Note that software trigger pulses can only be written if the trigger system has been activated using parameter
TriggerState. Moreover, if the queue has not been activated, new software trigger pulses can only be written if
the trigger system is not busy. Therefore, writing to the parameter can cause an Software Trigger Busy error.
Table 6.12. Parameter properties of SendSoftwareTrigger

Property Value
Name SendSoftwareTrigger
Display Name Send Software Trigger
Interface ICommand
Access policy Write/Change
Visibility Beginner

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 45

Example 6.11. Usage of SendSoftwareTrigger

/* Set */ SendSoftwareTrigger();

6.5.4.2.2. SoftwareTriggerIsBusy

After writing one or multiple pulses to the trigger system using the software trigger, the system might be busy
for a while. To check if there are no pulses left for processing use this parameter.

Table 6.13. Parameter properties of SoftwareTriggerIsBusy

Property Value
Name SoftwareTriggerIsBusy
Display Name Software Trigger Is Busy
Interface IBoolean
Access policy Read-Only
Visibility Beginner

Example 6.12. Usage of SoftwareTriggerIsBusy

/* Get */ value_ = SoftwareTriggerIsBusy;

6.5.4.2.3. SoftwareTriggerQueueFillLevel

The value of this parameter represents the number of pulses in the software trigger queue which have
to be processed. The fill level depends on the number of pulses written to SendSoftwareTrigger, the
trigger pulse multiplication factor TriggerMultiplyPulses and the maximum output frequency defined by
TriggerOutputFrequency. The value decrement is given in steps of TriggerMultiplyPulses.

Table 6.14. Parameter properties of SoftwareTriggerQueueFillLevel

Property Value
Name SoftwareTriggerQueueFillLevel
Display Name Software Trigger Queue Fill Level
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 2040
Stepsize 1

Unit of measure pulses

Example 6.13. Usage of SoftwareTriggerQueueFillLevel

/* Get */ value_ = SoftwareTriggerQueueFillLevel;

6.5.4.3. InStatistics

The trigger input statistics module will offer you frequency analysis and pulse counting of the selected input. The
digital input for the statistics is selected by TriggerInPolarity. Measurements are performed after debouncing
and polarity selection but before downscaling.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 46

The statistics section also includes a list of digital input events.

6.5.4.3.1. TriggerInStatisticsSource

The trigger statistics module allows you to individually select one of the inputs as source. Select one of the
eight inputs.

Table 6.15. Parameter properties of TriggerInStatisticsSource

Property Value
Name TriggerInStatisticsSource
Display Name Trigger In Statistics Source
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values GPITriggerSource0 GPI Trigger Source 0

GPITriggerSource1 GPI Trigger Source 1
GPITriggerSource2 GPI Trigger Source 2
GPITriggerSource3 GPI Trigger Source 3
GPITriggerSource4 GPI Trigger Source 4
GPITriggerSource5 GPI Trigger Source 5
GPITriggerSource6 GPI Trigger Source 6
GPITriggerSource7 GPI Trigger Source 7
TriggerInSourceFrontGPI0 Trigger In Source Front GPI 0
TriggerInSourceFrontGPI1 Trigger In Source Front GPI 1
TriggerInSourceFrontGPI2 Trigger In Source Front GPI 2
TriggerInSourceFrontGPI3 Trigger In Source Front GPI 3

Default value GPITriggerSource0

Example 6.14. Usage of TriggerInStatisticsSource

/* Set */ TriggerInStatisticsSource = GPITriggerSource0;
/* Get */ value_ = TriggerInStatisticsSource;

6.5.4.3.2. TriggerInStatisticsPolarity

For the selected input using parameter TriggerInStatisticsSource the polarity is set using this parameter.

Table 6.16. Parameter properties of TriggerInStatisticsPolarity

Property Value
Name TriggerInStatisticsPolarity
Display Name Trigger In Statistics Polarity
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values LowActive Low Active

HighActive High Active

Default value HighActive

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 47

Example 6.15. Usage of TriggerInStatisticsPolarity

/* Set */ TriggerInStatisticsPolarity = HighActive;
/* Get */ value_ = TriggerInStatisticsPolarity;

6.5.4.3.3. TriggerInStatisticsPulseCount

The input pulses are count and the current value can be read with this parameter. Use the counter for verification
of your system. For example, compare the counter value with the received number of images to check for
exceeding periods.

Table 6.17. Parameter properties of TriggerInStatisticsPulseCount

Property Value
Name TriggerInStatisticsPulseCount
Display Name Trigger In Statistics Pulse Count
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 65535
Stepsize 1

Unit of measure pulses

Example 6.16. Usage of TriggerInStatisticsPulseCount

/* Get */ value_ = TriggerInStatisticsPulseCount;

6.5.4.3.4. TriggerInStatisticsPulseCountClear

Clear the input pulse counter by writing to this register.

Table 6.18. Parameter properties of TriggerInStatisticsPulseCountClear

Property Value
Name TriggerInStatisticsPulseCountClear
Display Name Trigger In Statistics Pulse Count Clear
Interface ICommand
Access policy Write/Change
Visibility Beginner

Example 6.17. Usage of TriggerInStatisticsPulseCountClear

/* Set */ TriggerInStatisticsPulseCountClear();

6.5.4.3.5. TriggerInStatisticsFrequency

The current frequency can be read using this parameter. It shows the frequency of the last two received pulses
at the frame grabber.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 48

Table 6.19. Parameter properties of TriggerInStatisticsFrequency

Property Value
Name TriggerInStatisticsFrequency
Display Name Trigger In Statistics Frequency
Interface IFloat
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0.0

Maximum 3.125E8
Stepsize 2.220446049250313E-16

Unit of measure Hz

Example 6.18. Usage of TriggerInStatisticsFrequency

/* Get */ value_ = TriggerInStatisticsFrequency;

6.5.4.3.6. TriggerInStatisticsMinimumFrequency

The trigger system will memorize the minimum detected input frequency. This will give you information about
frequency peaks.

Table 6.20. Parameter properties of TriggerInStatisticsMinimumFrequency

Property Value
Name TriggerInStatisticsMinimumFrequency
Display Name Trigger In Statistics Minimum Frequency
Interface IFloat
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0.0

Maximum 3.125E8
Stepsize 2.220446049250313E-16

Unit of measure Hz

Example 6.19. Usage of TriggerInStatisticsMinimumFrequency

/* Get */ value_ = TriggerInStatisticsMinimumFrequency;

6.5.4.3.7. TriggerInStatisticsMaximumFrequency

The trigger system will memorize the maximum detected input frequency. This will give you information about
frequency peaks.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 49

Table 6.21. Parameter properties of TriggerInStatisticsMaximumFrequency

Property Value
Name TriggerInStatisticsMaximumFrequency
Display Name Trigger In Statistics Maximum Frequency
Interface IFloat
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0.0

Maximum 3.125E8
Stepsize 2.220446049250313E-16

Unit of measure Hz

Example 6.20. Usage of TriggerInStatisticsMaximumFrequency

/* Get */ value_ = TriggerInStatisticsMaximumFrequency;

6.5.4.3.8. TriggerInStatisticsMinMaxFrequencyClear

To clear the minimum and maximum frequency measurements, write to this register. The minimum and
maxumum frequency will then be the current input frequency.

Table 6.22. Parameter properties of TriggerInStatisticsMinMaxFrequencyClear

Property Value
Name TriggerInStatisticsMinMaxFrequencyClear
Display Name Trigger In Statistics Min Max Frequency Clear
Interface ICommand
Access policy Write/Change
Visibility Beginner

Example 6.21. Usage of TriggerInStatisticsMinMaxFrequencyClear

/* Set */ TriggerInStatisticsMinMaxFrequencyClear();

6.5.4.3.9. LineFront0RisingEdge

This event is generated for each rising signal edge at trigger input 0. Except for the timestamp, the event has
no additional data included. Keep in mind that fast changes of the input signal can cause high interrupt rates
which might slow down the system. This event can occur independent of the acquisition status.

For a general explanation on events see Event.

6.5.4.3.10. LineFront0FallingEdge

This event is generated for each falling signal edge at trigger input 0. Except for the timestamp, the event has
no additional data included. Keep in mind that fast changes of the input signal can cause high interrupt rates
which might slow down the system. This event can occur independent of the acquisition status.

For a general explanation on events see Event.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 50

6.5.4.3.11. Line0RisingEdge

This event is generated for each rising signal edge at trigger input 0. Except for the timestamp, the event has
no additional data included. Keep in mind that fast changes of the input signal can cause high interrupt rates
which might slow down the system. This event can occur independent of the acquisition status.

For a general explanation on events see Event.

6.5.4.3.12. Line0FallingEdge

This event is generated for each falling signal edge at trigger input 0. Except for the timestamp, the event has
no additional data included. Keep in mind that fast changes of the input signal can cause high interrupt rates
which might slow down the system. This event can occur independent of the acquisition status.

For a general explanation on events see Event.

6.5.5. Sequencer

The sequencer is a powerful feature to generate multiple pulses out of one input pulse. It is available in external
and software trigger mode, but not in generator mode. The sequencer multiplies an input pulse using the factor
set by TriggerMultiplyPulses. The inserted pulses will have a time delay to the original signal according to
the setting made for parameter TriggerOutputFrequency. Thus, the inserted pulses are not evenly distributed
between the input pulses, they will be inserted with a delay specified by TriggerOutputFrequency. Hence, it is
very important, that the multiplicate pulses with a parameterized delay will not cause a loss of input signals.

Let's have a look at an example. Suppose you have an external trigger source generating a pulse once every
second. Your input frequency will then be 1Hz. Assume that the sequencer is set to a multiplication factor of 2
and the maximum frequency defined by TriggerOutputFrequency is set to 2.1Hz.

The trigger system will forward each external pulse into the trigger system and will also generate a second
pulse 0.48 seconds later. As you can see, the multiplication frequency is chosen to be slightly higher than the
doubled input frequency. This will allow the compensation of varying input frequencies. If the time between
two pulses at the input will be less than 0.96 seconds, you will loose the second pulse. Basler recommends
the multiplication frequency to be fast enough to not loose pulses or recommends the activation of the trigger
queue for compensation. You can check for lost pulses with parameter TriggerExceededPeriodLimits.

6.5.5.1. TriggerMultiplyPulses

Set the trigger input multiplication factor.

Table 6.23. Parameter properties of TriggerMultiplyPulses

Property Value
Name TriggerMultiplyPulses
Display Name Upscale Trigger Pulses
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 1

Maximum 65535
Stepsize 1

Default value 1

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 51

Example 6.22. Usage of TriggerMultiplyPulses

/* Set */ TriggerMultiplyPulses = 1;
/* Get */ value_ = TriggerMultiplyPulses;

6.5.6. Queue

The maximum trigger output frequency is limited to the the setting of parameter TriggerOutputFrequency. This
can avoid the loss of trigger pulses in the camera which is hard to detect. In some cases it is possible, that
the frequency of your external trigger source varies. To prevent the loose of trigger pulses, you can activate
the trigger queue to buffer these pulses. Furthermore, the queue can be used to buffer trigger input pulses if
you use the sequencer and the software trigger.

Activate the trigger queue using parameter TriggerQueueMode.

The queue fill level can be monitored by parameter TriggerQueueFillLevel. Moreover, two events
allow the monitoring of the fill level. Using parameters TriggerQueueFillLevelEventOnThreshold and
TriggerQueueFillLevelEventOffThreshold it is possible to set two threshold. If the fill level exceeds the ON-
threshold the respective event TriggerQueueFilllevelThresholdOn is generated. If the fill level gets less or equal
than the OFF-threshold the event TriggerQueueFilllevelThresholdOff is generated.

Note that a fill level value n indicates that between n and n + 1 trigger pulses have to be processed by the
system. Therefore, a fill level value zero means that no more values are in the queue, but there might be still a
pulse (or multiple pulses if the sequencer is used) to be processed. There exists one exception for value zero
obtained with TriggerQueueFillLevel i.e. the parameter and not the events. This value at this parameter truly
indicates that no more pulses are in the queue and all pulses have been full processed.

6.5.6.1. TriggerQueueMode

Activate the queue using this parameter. Note that a queue de-activation will erase all remaining values in
the queue.

Table 6.24. Parameter properties of TriggerQueueMode

Property Value
Name TriggerQueueMode
Display Name Trigger Queue Mode
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values On On

Off Off

Default value Off

Example 6.23. Usage of TriggerQueueMode

/* Set */ TriggerQueueMode = Off;
/* Get */ value_ = TriggerQueueMode;

6.5.6.2. TriggerQueueFillLevel

Obtain the currently queued pulses with this parameter. At maximum 2040 pulses can be queued. The queue
fill level includes the input pulses, i.e. the external trigger pulses in the queue or the software trigger pulses in
the queue. The fill level does not include the pulses generated by the sequencer. The fill level is zero, if the
trigger system is not busy anymore i.e. no more pulses are left to be processed.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 52

Table 6.25. Parameter properties of TriggerQueueFillLevel

Property Value
Name TriggerQueueFillLevel
Display Name Trigger Queue Fill Level
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 2040
Stepsize 1

Unit of measure pulses

Example 6.24. Usage of TriggerQueueFillLevel

/* Get */ value_ = TriggerQueueFillLevel;

6.5.6.3. TriggerQueueFillLevelEventOnThreshold

Set the ON-threshold for fill level event generation with this parameter.

Table 6.26. Parameter properties of TriggerQueueFillLevelEventOnThreshold

Property Value
Name TriggerQueueFillLevelEventOnThreshold
Display Name Trigger Queue Fill Level Event On Threshold
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 2

Maximum 2047
Stepsize 1

Default value 2047
Unit of measure pulses

Example 6.25. Usage of TriggerQueueFillLevelEventOnThreshold

/* Set */ TriggerQueueFillLevelEventOnThreshold = 2047;
/* Get */ value_ = TriggerQueueFillLevelEventOnThreshold;

6.5.6.4. TriggerQueueFillLevelEventOffThreshold

Set the OFF-threshold for fill level event generation with this parameter.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 53

Table 6.27. Parameter properties of TriggerQueueFillLevelEventOffThreshold

Property Value
Name TriggerQueueFillLevelEventOffThreshold
Display Name Trigger Queue Fill Level Event Off Threshold
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 2

Maximum 2047
Stepsize 1

Default value 2
Unit of measure pulses

Example 6.26. Usage of TriggerQueueFillLevelEventOffThreshold

/* Set */ TriggerQueueFillLevelEventOffThreshold = 2;
/* Get */ value_ = TriggerQueueFillLevelEventOffThreshold;

6.5.6.5. TriggerQueueFilllevelThresholdOn

The event is generated if the queue fill level exceeds the ON-threshold set by parameter
TriggerQueueFillLevelEventOnThreshold. Except for the timestamp, the event has no additional data included.

For a general explanation on events see Event.

6.5.6.6. TriggerQueueFilllevelThresholdOff

The event is generated if the queue fill level gets less or equal than the OFF-threshold set by parameter
TriggerQueueFillLevelEventOffThreshold. Except for the timestamp, the event has no additional data included.

For a general explanation on events see Event.

6.5.7. Pulse Form Generator 0

The parameters explained previously were used to generate the trigger pulses. Next, we will need to prepare the
pulses for the outputs. The area trigger system includes four individual pulse form generators. These generators
define the width and delay of the output signals and also support downscaling of pulses which can be useful if
different light sources are used successively. After parameterizing the pulse form generators you can arbitrarily
allocate the pulse form generators to the outputs.

The following figure illustrates the output of the pulse form generators and the parameters.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 54

Figure 6.20. Pulse Form Generators

Input

input frequency or
1 / FG_TRIGGER_FRAMESPERSECOND

Pulse Form
Generator 0

width

delay

Pulse Form
Generator 1

delay

width

downscale 2
phase = 0

Pulse Form
Generator 2

delay

width

downscale 2
phase = 1

downscale 1
phase = 0

e.g. CC1

e.g. flash B

e.g. flash A

Once again, note that the ranges of the parameters depend on the other settings in the pulse form generators
and on paramerter TriggerOutputFrequency. If you want to increase the frequency you might need to decrease
the width or delay of one of the pulse form generators.

Equation 6.2. Dependency of Frequency and Pulse Form Generators

1

fps
> Max

8
>>>>>>>>>><
>>>>>>>>>>:

MaxfWIDTH0;DELAY0g
DOWNSCALE0

;

MaxfWIDTH1;DELAY1g
DOWNSCALE1

;

MaxfWIDTH2;DELAY2g
DOWNSCALE2

;

MaxfWIDTH3;DELAY3g
DOWNSCALE3

9
>>>>>>>>>>=
>>>>>>>>>>;

• fps = TriggerOutputFrequency

• WIDTH[0..3] = TriggerPulseFormGenerator[0..3]Width

• DELAY[0..3] = TriggerPulseFormGenerator[0..3]Delay

• DOWNSCALE[0..3] = TriggerPulseFormGenerator[0..3]Downscale

6.5.7.1. TriggerPulseFormGenerator0Downscale et al.

Note

This description applies also to the following parameters:
TriggerPulseFormGenerator1Downscale, TriggerPulseFormGenerator2Downscale,
TriggerPulseFormGenerator3Downscale

The trigger pulses can be downscaled. Set the downscale factor by use of this parameter. Note the dependency
between this parameter and the phase. See TriggerPulseFormGenerator[0..3]DownscalePhase for more
information.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 55

Table 6.28. Parameter properties of TriggerPulseFormGenerator0Downscale

Property Value
Name TriggerPulseFormGenerator0Downscale
Display Name Trigger Pulse Form Generator0 Downscale
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 1

Maximum 7
Stepsize 1

Default value 1

Example 6.27. Usage of TriggerPulseFormGenerator0Downscale

/* Set */ TriggerPulseFormGenerator0Downscale = 1;
/* Get */ value_ = TriggerPulseFormGenerator0Downscale;

6.5.7.2. TriggerPulseFormGenerator0DownscalePhase et al.

Note
This description applies also to the following parameters:
TriggerPulseFormGenerator1DownscalePhase, TriggerPulseFormGenerator2DownscalePhase,
TriggerPulseFormGenerator3DownscalePhase

The parameter TriggerPulseFormGenerator[0..3]Downscale defines the number of phases and parameter
TriggerPulseFormGenerator[0..3]DownscalePhase selects the one being used. The downscale value
represents the factor. For example value three will remove two out of three successive trigger pulses. The
phase is used to make the selection of the pulse in the sequence. For the given example, a phase set to value
zero will forward the first pulse and will remove pulses two and three of a sequence of three pulses. Check
Section 6.5.7, 'Pulse Form Generator 0' for more information.

Take care of the dependency between the downscale factor and the phase. The factor has to be greater than
the phase.

Table 6.29. Parameter properties of TriggerPulseFormGenerator0DownscalePhase

Property Value
Name TriggerPulseFormGenerator0DownscalePhase
Display Name Trigger Pulse Form Generator0 Downscale Phase
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0

Maximum 6
Stepsize 1

Default value 0

Example 6.28. Usage of TriggerPulseFormGenerator0DownscalePhase

/* Set */ TriggerPulseFormGenerator0DownscalePhase = 0;
/* Get */ value_ = TriggerPulseFormGenerator0DownscalePhase;

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 56

6.5.7.3. TriggerPulseFormGenerator0Delay et al.

Note
This description applies also to the following parameters: TriggerPulseFormGenerator1Delay,
TriggerPulseFormGenerator2Delay, TriggerPulseFormGenerator3Delay

Set a signal delay with this parameter. The unit of this parameter is µs.

Table 6.30. Parameter properties of TriggerPulseFormGenerator0Delay

Property Value
Name TriggerPulseFormGenerator0Delay
Display Name Trigger Pulse Form Generator0 Delay
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0

Maximum 3.4E7
Stepsize 0.0032

Default value 0.0
Unit of measure µs

Example 6.29. Usage of TriggerPulseFormGenerator0Delay

/* Set */ TriggerPulseFormGenerator0Delay = 0.0;
/* Get */ value_ = TriggerPulseFormGenerator0Delay;

6.5.7.4. TriggerPulseFormGenerator0Width et al.

Note
This description applies also to the following parameters: TriggerPulseFormGenerator1Width,
TriggerPulseFormGenerator2Width, TriggerPulseFormGenerator3Width

Set the signal width, i.e. the active time of the output signal. The unit of this parameter is µs.

Table 6.31. Parameter properties of TriggerPulseFormGenerator0Width

Property Value
Name TriggerPulseFormGenerator0Width
Display Name Trigger Pulse Form Generator0 Width
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0032

Maximum 6.8E7
Stepsize 0.0032

Default value 4.0
Unit of measure µs

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 57

Example 6.30. Usage of TriggerPulseFormGenerator0Width

/* Set */ TriggerPulseFormGenerator0Width = 4.0;
/* Get */ value_ = TriggerPulseFormGenerator0Width;

6.5.8. Pulse Form Generator 1

The settings for pulse form generator 1 are equal to those of pulse form generator 0. Please read Section 6.5.7,
'Pulse Form Generator 0' for a detailed description.

6.5.9. Pulse Form Generator 2

The settings for pulse form generator 2 are equal to those of pulse form generator 0. Please read Section 6.5.7,
'Pulse Form Generator 0' for a detailed description.

6.5.10. Pulse Form Generator 3

The settings for pulse form generator 3 are equal to those of pulse form generator 0. Please read Section 6.5.7,
'Pulse Form Generator 0' for a detailed description.

6.5.11. CameraOutSignalMapping

The camera interface of the imaFlex CXP-12 Quad is equipped with a trigger output channel to trigger the
camera.

Moreover, eight general purpose outputs (GPOs) and in addition 2 Front GPOs to the camera exist.
To identify the required signals and their mapping, consult the vendor's manual of your camera.

The trigger system of this applet provides several possibilities of mapping pulse sources to the camera
channels:

• Pulse form generators 0 to 3

The pulse form generators are the main output sources of the trigger system. You can map either the
start or the end of the signals to the CXP camera port. If your camera runs in Timed mode with external
CXP trigger, you only need to send the start signal, usually on CXP LinkTrigger0. If your camera runs in
TriggerControlled mode, you need to send the start of exposure signal on CXP LinkTrigger0 and the
end of exposure signal on CXP LinkTrigger1.

• If you don't need to send any pulses on CXP LinkTrigger, set CxpLinkTrigger0Source to GND.

• The input bypass

The frame grabber trigger system ignores the signal length of the input signals. If you want to directly bypass
one of the input signals to a CXP LinkTrigger, you can select the input start or end signal of pulse, i.e. rising
or falling edge.

6.5.11.1. CxpLinkTrigger0Source

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 58

Table 6.32. Parameter properties of CxpLinkTrigger0Source

Property Value
Name CxpLinkTrigger0Source
Display Name CXP Link Trigger 0 Source
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values GND GND

CamAPulseGenerator0RisingEdgeCam A Pulse Generator 0 Rising
CamAPulseGenerator1RisingEdgeCam A Pulse Generator 1 Rising
CamAPulseGenerator2RisingEdgeCam A Pulse Generator 2 Rising
CamAPulseGenerator3RisingEdgeCam A Pulse Generator 3 Rising
CamAPulseGenerator0FallingEdgeCam A Pulse Generator 0 Falling
CamAPulseGenerator1FallingEdgeCam A Pulse Generator 1 Falling
CamAPulseGenerator2FallingEdgeCam A Pulse Generator 2 Falling
CamAPulseGenerator3FallingEdgeCam A Pulse Generator 3 Falling
CamBPulseGenerator0RisingEdgeCam B Pulse Generator 0 Rising
CamBPulseGenerator1RisingEdgeCam B Pulse Generator 1 Rising
CamBPulseGenerator2RisingEdgeCam B Pulse Generator 2 Rising
CamBPulseGenerator3RisingEdgeCam B Pulse Generator 3 Rising
CamBPulseGenerator0FallingEdgeCam B Pulse Generator 0 Falling
CamBPulseGenerator1FallingEdgeCam B Pulse Generator 1 Falling
CamBPulseGenerator2FallingEdgeCam B Pulse Generator 2 Falling
CamBPulseGenerator3FallingEdgeCam B Pulse Generator 3 Falling
CamCPulseGenerator0RisingEdgeCam C Pulse Generator 0 Rising
CamCPulseGenerator1RisingEdgeCam C Pulse Generator 1 Rising
CamCPulseGenerator2RisingEdgeCam C Pulse Generator 2 Rising
CamCPulseGenerator3RisingEdgeCam C Pulse Generator 3 Rising
CamCPulseGenerator0FallingEdgeCam C Pulse Generator 0 Falling
CamCPulseGenerator1FallingEdgeCam C Pulse Generator 1 Falling
CamCPulseGenerator2FallingEdgeCam C Pulse Generator 2 Falling
CamCPulseGenerator3FallingEdgeCam C Pulse Generator 3 Falling
CamDPulseGenerator0RisingEdgeCam D Pulse Generator 0 Rising
CamDPulseGenerator1RisingEdgeCam D Pulse Generator 1 Rising
CamDPulseGenerator2RisingEdgeCam D Pulse Generator 2 Rising
CamDPulseGenerator3RisingEdgeCam D Pulse Generator 3 Rising
CamDPulseGenerator0FallingEdgeCam D Pulse Generator 0 Falling
CamDPulseGenerator1FallingEdgeCam D Pulse Generator 1 Falling
CamDPulseGenerator2FallingEdgeCam D Pulse Generator 2 Falling
CamDPulseGenerator3FallingEdgeCam D Pulse Generator 3 Falling
BypassGPI0RisingEdge Bypass GPI 0 Rising
BypassGPI0FallingEdge Bypass GPI 0 Falling
BypassGPI1RisingEdge Bypass GPI 1 Rising
BypassGPI1FallingEdge Bypass GPI 1 Falling
BypassGPI2RisingEdge Bypass GPI 2 Rising
BypassGPI2FallingEdge Bypass GPI 2 Falling
BypassGPI3RisingEdge Bypass GPI 3 Rising
BypassGPI3FallingEdge Bypass GPI 3 Falling
BypassGPI4RisingEdge Bypass GPI 4 Rising
BypassGPI4FallingEdge Bypass GPI 4 Falling
BypassGPI5RisingEdge Bypass GPI 5 Rising
BypassGPI5FallingEdge Bypass GPI 5 Falling
BypassGPI6RisingEdge Bypass GPI 6 Rising
BypassGPI6FallingEdge Bypass GPI 6 Falling
BypassGPI7RisingEdge Bypass GPI 7 Rising
BypassGPI7FallingEdge Bypass GPI 7 Falling
BypassFrontGPI0RisingEdge Bypass Front GPI 0 Rising
BypassFrontGPI0FallingEdgeBypass Front GPI 0 Falling
BypassFrontGPI1RisingEdge Bypass Front GPI 1 Rising
BypassFrontGPI1FallingEdgeBypass Front GPI 1 Falling
BypassFrontGPI2RisingEdge Bypass Front GPI 2 Rising
BypassFrontGPI2FallingEdgeBypass Front GPI 2 Falling
BypassFrontGPI3RisingEdge Bypass Front GPI 3 Rising
BypassFrontGPI3FallingEdgeBypass Front GPI 3 Falling
PulseGeneratorRisingEdge Pulse Generator 0 Rising
PulseGenerator1RisingEdge Pulse Generator 1 Rising
PulseGenerator2RisingEdge Pulse Generator 2 Rising
PulseGenerator3RisingEdge Pulse Generator 3 Rising
PulseGenerator0FallingEdgePulse Generator 0 Falling
PulseGenerator1FallingEdgePulse Generator 1 Falling
PulseGenerator2FallingEdgePulse Generator 2 Falling
PulseGenerator3FallingEdgePulse Generator 3 Falling

Default value PulseGeneratorRisingEdge

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 59

Example 6.31. Usage of CxpLinkTrigger0Source

/* Set */ CxpLinkTrigger0Source = PulseGeneratorRisingEdge;
/* Get */ value_ = CxpLinkTrigger0Source;

6.5.11.2. CxpLinkTrigger1Source

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 60

Table 6.33. Parameter properties of CxpLinkTrigger1Source

Property Value
Name CxpLinkTrigger1Source
Display Name CXP Link Trigger 1 Source
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values GND GND

CamAPulseGenerator0RisingEdgeCam A Pulse Generator 0 Rising
CamAPulseGenerator1RisingEdgeCam A Pulse Generator 1 Rising
CamAPulseGenerator2RisingEdgeCam A Pulse Generator 2 Rising
CamAPulseGenerator3RisingEdgeCam A Pulse Generator 3 Rising
CamAPulseGenerator0FallingEdgeCam A Pulse Generator 0 Falling
CamAPulseGenerator1FallingEdgeCam A Pulse Generator 1 Falling
CamAPulseGenerator2FallingEdgeCam A Pulse Generator 2 Falling
CamAPulseGenerator3FallingEdgeCam A Pulse Generator 3 Falling
CamBPulseGenerator0RisingEdgeCam B Pulse Generator 0 Rising
CamBPulseGenerator1RisingEdgeCam B Pulse Generator 1 Rising
CamBPulseGenerator2RisingEdgeCam B Pulse Generator 2 Rising
CamBPulseGenerator3RisingEdgeCam B Pulse Generator 3 Rising
CamBPulseGenerator0FallingEdgeCam B Pulse Generator 0 Falling
CamBPulseGenerator1FallingEdgeCam B Pulse Generator 1 Falling
CamBPulseGenerator2FallingEdgeCam B Pulse Generator 2 Falling
CamBPulseGenerator3FallingEdgeCam B Pulse Generator 3 Falling
CamCPulseGenerator0RisingEdgeCam C Pulse Generator 0 Rising
CamCPulseGenerator1RisingEdgeCam C Pulse Generator 1 Rising
CamCPulseGenerator2RisingEdgeCam C Pulse Generator 2 Rising
CamCPulseGenerator3RisingEdgeCam C Pulse Generator 3 Rising
CamCPulseGenerator0FallingEdgeCam C Pulse Generator 0 Falling
CamCPulseGenerator1FallingEdgeCam C Pulse Generator 1 Falling
CamCPulseGenerator2FallingEdgeCam C Pulse Generator 2 Falling
CamCPulseGenerator3FallingEdgeCam C Pulse Generator 3 Falling
CamDPulseGenerator0RisingEdgeCam D Pulse Generator 0 Rising
CamDPulseGenerator1RisingEdgeCam D Pulse Generator 1 Rising
CamDPulseGenerator2RisingEdgeCam D Pulse Generator 2 Rising
CamDPulseGenerator3RisingEdgeCam D Pulse Generator 3 Rising
CamDPulseGenerator0FallingEdgeCam D Pulse Generator 0 Falling
CamDPulseGenerator1FallingEdgeCam D Pulse Generator 1 Falling
CamDPulseGenerator2FallingEdgeCam D Pulse Generator 2 Falling
CamDPulseGenerator3FallingEdgeCam D Pulse Generator 3 Falling
BypassGPI0RisingEdge Bypass GPI 0 Rising
BypassGPI0FallingEdge Bypass GPI 0 Falling
BypassGPI1RisingEdge Bypass GPI 1 Rising
BypassGPI1FallingEdge Bypass GPI 1 Falling
BypassGPI2RisingEdge Bypass GPI 2 Rising
BypassGPI2FallingEdge Bypass GPI 2 Falling
BypassGPI3RisingEdge Bypass GPI 3 Rising
BypassGPI3FallingEdge Bypass GPI 3 Falling
BypassGPI4RisingEdge Bypass GPI 4 Rising
BypassGPI4FallingEdge Bypass GPI 4 Falling
BypassGPI5RisingEdge Bypass GPI 5 Rising
BypassGPI5FallingEdge Bypass GPI 5 Falling
BypassGPI6RisingEdge Bypass GPI 6 Rising
BypassGPI6FallingEdge Bypass GPI 6 Falling
BypassGPI7RisingEdge Bypass GPI 7 Rising
BypassGPI7FallingEdge Bypass GPI 7 Falling
BypassFrontGPI0RisingEdge Bypass Front GPI 0 Rising
BypassFrontGPI0FallingEdgeBypass Front GPI 0 Falling
BypassFrontGPI1RisingEdge Bypass Front GPI 1 Rising
BypassFrontGPI1FallingEdgeBypass Front GPI 1 Falling
BypassFrontGPI2RisingEdge Bypass Front GPI 2 Rising
BypassFrontGPI2FallingEdgeBypass Front GPI 2 Falling
BypassFrontGPI3RisingEdge Bypass Front GPI 3 Rising
BypassFrontGPI3FallingEdgeBypass Front GPI 3 Falling
PulseGeneratorRisingEdge Pulse Generator 0 Rising
PulseGenerator1RisingEdge Pulse Generator 1 Rising
PulseGenerator2RisingEdge Pulse Generator 2 Rising
PulseGenerator3RisingEdge Pulse Generator 3 Rising
PulseGenerator0FallingEdgePulse Generator 0 Falling
PulseGenerator1FallingEdgePulse Generator 1 Falling
PulseGenerator2FallingEdgePulse Generator 2 Falling
PulseGenerator3FallingEdgePulse Generator 3 Falling

Default value PulseGenerator0FallingEdge

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 61

Example 6.32. Usage of CxpLinkTrigger1Source

/* Set */ CxpLinkTrigger1Source = PulseGenerator0FallingEdge;
/* Get */ value_ = CxpLinkTrigger1Source;

6.5.11.3. CxpLinkTrigger2Source

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 62

Table 6.34. Parameter properties of CxpLinkTrigger2Source

Property Value
Name CxpLinkTrigger2Source
Display Name CXP Link Trigger 2 Source
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values GND GND

CamAPulseGenerator0RisingEdgeCam A Pulse Generator 0 Rising
CamAPulseGenerator1RisingEdgeCam A Pulse Generator 1 Rising
CamAPulseGenerator2RisingEdgeCam A Pulse Generator 2 Rising
CamAPulseGenerator3RisingEdgeCam A Pulse Generator 3 Rising
CamAPulseGenerator0FallingEdgeCam A Pulse Generator 0 Falling
CamAPulseGenerator1FallingEdgeCam A Pulse Generator 1 Falling
CamAPulseGenerator2FallingEdgeCam A Pulse Generator 2 Falling
CamAPulseGenerator3FallingEdgeCam A Pulse Generator 3 Falling
CamBPulseGenerator0RisingEdgeCam B Pulse Generator 0 Rising
CamBPulseGenerator1RisingEdgeCam B Pulse Generator 1 Rising
CamBPulseGenerator2RisingEdgeCam B Pulse Generator 2 Rising
CamBPulseGenerator3RisingEdgeCam B Pulse Generator 3 Rising
CamBPulseGenerator0FallingEdgeCam B Pulse Generator 0 Falling
CamBPulseGenerator1FallingEdgeCam B Pulse Generator 1 Falling
CamBPulseGenerator2FallingEdgeCam B Pulse Generator 2 Falling
CamBPulseGenerator3FallingEdgeCam B Pulse Generator 3 Falling
CamCPulseGenerator0RisingEdgeCam C Pulse Generator 0 Rising
CamCPulseGenerator1RisingEdgeCam C Pulse Generator 1 Rising
CamCPulseGenerator2RisingEdgeCam C Pulse Generator 2 Rising
CamCPulseGenerator3RisingEdgeCam C Pulse Generator 3 Rising
CamCPulseGenerator0FallingEdgeCam C Pulse Generator 0 Falling
CamCPulseGenerator1FallingEdgeCam C Pulse Generator 1 Falling
CamCPulseGenerator2FallingEdgeCam C Pulse Generator 2 Falling
CamCPulseGenerator3FallingEdgeCam C Pulse Generator 3 Falling
CamDPulseGenerator0RisingEdgeCam D Pulse Generator 0 Rising
CamDPulseGenerator1RisingEdgeCam D Pulse Generator 1 Rising
CamDPulseGenerator2RisingEdgeCam D Pulse Generator 2 Rising
CamDPulseGenerator3RisingEdgeCam D Pulse Generator 3 Rising
CamDPulseGenerator0FallingEdgeCam D Pulse Generator 0 Falling
CamDPulseGenerator1FallingEdgeCam D Pulse Generator 1 Falling
CamDPulseGenerator2FallingEdgeCam D Pulse Generator 2 Falling
CamDPulseGenerator3FallingEdgeCam D Pulse Generator 3 Falling
BypassGPI0RisingEdge Bypass GPI 0 Rising
BypassGPI0FallingEdge Bypass GPI 0 Falling
BypassGPI1RisingEdge Bypass GPI 1 Rising
BypassGPI1FallingEdge Bypass GPI 1 Falling
BypassGPI2RisingEdge Bypass GPI 2 Rising
BypassGPI2FallingEdge Bypass GPI 2 Falling
BypassGPI3RisingEdge Bypass GPI 3 Rising
BypassGPI3FallingEdge Bypass GPI 3 Falling
BypassGPI4RisingEdge Bypass GPI 4 Rising
BypassGPI4FallingEdge Bypass GPI 4 Falling
BypassGPI5RisingEdge Bypass GPI 5 Rising
BypassGPI5FallingEdge Bypass GPI 5 Falling
BypassGPI6RisingEdge Bypass GPI 6 Rising
BypassGPI6FallingEdge Bypass GPI 6 Falling
BypassGPI7RisingEdge Bypass GPI 7 Rising
BypassGPI7FallingEdge Bypass GPI 7 Falling
BypassFrontGPI0RisingEdge Bypass Front GPI 0 Rising
BypassFrontGPI0FallingEdgeBypass Front GPI 0 Falling
BypassFrontGPI1RisingEdge Bypass Front GPI 1 Rising
BypassFrontGPI1FallingEdgeBypass Front GPI 1 Falling
BypassFrontGPI2RisingEdge Bypass Front GPI 2 Rising
BypassFrontGPI2FallingEdgeBypass Front GPI 2 Falling
BypassFrontGPI3RisingEdge Bypass Front GPI 3 Rising
BypassFrontGPI3FallingEdgeBypass Front GPI 3 Falling
PulseGeneratorRisingEdge Pulse Generator 0 Rising
PulseGenerator1RisingEdge Pulse Generator 1 Rising
PulseGenerator2RisingEdge Pulse Generator 2 Rising
PulseGenerator3RisingEdge Pulse Generator 3 Rising
PulseGenerator0FallingEdgePulse Generator 0 Falling
PulseGenerator1FallingEdgePulse Generator 1 Falling
PulseGenerator2FallingEdgePulse Generator 2 Falling
PulseGenerator3FallingEdgePulse Generator 3 Falling

Default value GND

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 63

Example 6.33. Usage of CxpLinkTrigger2Source

/* Set */ CxpLinkTrigger2Source = GND;
/* Get */ value_ = CxpLinkTrigger2Source;

6.5.11.4. CxpLinkTrigger3Source

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 64

Table 6.35. Parameter properties of CxpLinkTrigger3Source

Property Value
Name CxpLinkTrigger3Source
Display Name CXP Link Trigger 3 Source
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values GND GND

CamAPulseGenerator0RisingEdgeCam A Pulse Generator 0 Rising
CamAPulseGenerator1RisingEdgeCam A Pulse Generator 1 Rising
CamAPulseGenerator2RisingEdgeCam A Pulse Generator 2 Rising
CamAPulseGenerator3RisingEdgeCam A Pulse Generator 3 Rising
CamAPulseGenerator0FallingEdgeCam A Pulse Generator 0 Falling
CamAPulseGenerator1FallingEdgeCam A Pulse Generator 1 Falling
CamAPulseGenerator2FallingEdgeCam A Pulse Generator 2 Falling
CamAPulseGenerator3FallingEdgeCam A Pulse Generator 3 Falling
CamBPulseGenerator0RisingEdgeCam B Pulse Generator 0 Rising
CamBPulseGenerator1RisingEdgeCam B Pulse Generator 1 Rising
CamBPulseGenerator2RisingEdgeCam B Pulse Generator 2 Rising
CamBPulseGenerator3RisingEdgeCam B Pulse Generator 3 Rising
CamBPulseGenerator0FallingEdgeCam B Pulse Generator 0 Falling
CamBPulseGenerator1FallingEdgeCam B Pulse Generator 1 Falling
CamBPulseGenerator2FallingEdgeCam B Pulse Generator 2 Falling
CamBPulseGenerator3FallingEdgeCam B Pulse Generator 3 Falling
CamCPulseGenerator0RisingEdgeCam C Pulse Generator 0 Rising
CamCPulseGenerator1RisingEdgeCam C Pulse Generator 1 Rising
CamCPulseGenerator2RisingEdgeCam C Pulse Generator 2 Rising
CamCPulseGenerator3RisingEdgeCam C Pulse Generator 3 Rising
CamCPulseGenerator0FallingEdgeCam C Pulse Generator 0 Falling
CamCPulseGenerator1FallingEdgeCam C Pulse Generator 1 Falling
CamCPulseGenerator2FallingEdgeCam C Pulse Generator 2 Falling
CamCPulseGenerator3FallingEdgeCam C Pulse Generator 3 Falling
CamDPulseGenerator0RisingEdgeCam D Pulse Generator 0 Rising
CamDPulseGenerator1RisingEdgeCam D Pulse Generator 1 Rising
CamDPulseGenerator2RisingEdgeCam D Pulse Generator 2 Rising
CamDPulseGenerator3RisingEdgeCam D Pulse Generator 3 Rising
CamDPulseGenerator0FallingEdgeCam D Pulse Generator 0 Falling
CamDPulseGenerator1FallingEdgeCam D Pulse Generator 1 Falling
CamDPulseGenerator2FallingEdgeCam D Pulse Generator 2 Falling
CamDPulseGenerator3FallingEdgeCam D Pulse Generator 3 Falling
BypassGPI0RisingEdge Bypass GPI 0 Rising
BypassGPI0FallingEdge Bypass GPI 0 Falling
BypassGPI1RisingEdge Bypass GPI 1 Rising
BypassGPI1FallingEdge Bypass GPI 1 Falling
BypassGPI2RisingEdge Bypass GPI 2 Rising
BypassGPI2FallingEdge Bypass GPI 2 Falling
BypassGPI3RisingEdge Bypass GPI 3 Rising
BypassGPI3FallingEdge Bypass GPI 3 Falling
BypassGPI4RisingEdge Bypass GPI 4 Rising
BypassGPI4FallingEdge Bypass GPI 4 Falling
BypassGPI5RisingEdge Bypass GPI 5 Rising
BypassGPI5FallingEdge Bypass GPI 5 Falling
BypassGPI6RisingEdge Bypass GPI 6 Rising
BypassGPI6FallingEdge Bypass GPI 6 Falling
BypassGPI7RisingEdge Bypass GPI 7 Rising
BypassGPI7FallingEdge Bypass GPI 7 Falling
BypassFrontGPI0RisingEdge Bypass Front GPI 0 Rising
BypassFrontGPI0FallingEdgeBypass Front GPI 0 Falling
BypassFrontGPI1RisingEdge Bypass Front GPI 1 Rising
BypassFrontGPI1FallingEdgeBypass Front GPI 1 Falling
BypassFrontGPI2RisingEdge Bypass Front GPI 2 Rising
BypassFrontGPI2FallingEdgeBypass Front GPI 2 Falling
BypassFrontGPI3RisingEdge Bypass Front GPI 3 Rising
BypassFrontGPI3FallingEdgeBypass Front GPI 3 Falling
PulseGeneratorRisingEdge Pulse Generator 0 Rising
PulseGenerator1RisingEdge Pulse Generator 1 Rising
PulseGenerator2RisingEdge Pulse Generator 2 Rising
PulseGenerator3RisingEdge Pulse Generator 3 Rising
PulseGenerator0FallingEdgePulse Generator 0 Falling
PulseGenerator1FallingEdgePulse Generator 1 Falling
PulseGenerator2FallingEdgePulse Generator 2 Falling
PulseGenerator3FallingEdgePulse Generator 3 Falling

Default value GND

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 65

Example 6.34. Usage of CxpLinkTrigger3Source

/* Set */ CxpLinkTrigger3Source = GND;
/* Get */ value_ = CxpLinkTrigger3Source;

6.5.12. DigitalOutput

The imaFlex CXP-12 Quad frame grabber have eight general purpose outputs (GPOs) and in addition 2 Front
GPOs.

The trigger system of this applet provides several possibilities of mapping sources to the digital output signals:

• Pulse form generators

The pulse form generators are the main output sources of the trigger system. You can either directly bypass
one of the four sources to a digital output or invert its signal. As this is a multi camera applet you can choose
any of the trigger modules for each output. For example you can select Cam A pulse form generator 0 for
all outputs.

• Ground or Vcc if a digital output is not used or you want to manually set the signal level.

• The input bypass

The trigger system will ignore the signal length of the input signals. If you want to bypass an input directly to
the output you can select the specific input or its inverted version.

6.5.12.1. TriggerOutSelectGPO0 et al.

Note

This description applies also to the following parameters: TriggerOutSelectGPO1,
TriggerOutSelectGPO2, TriggerOutSelectGPO3, TriggerOutSelectGPO4,
TriggerOutSelectGPO5, TriggerOutSelectGPO6, TriggerOutSelectGPO7

Select the source for the output on the respective GPO.

Using legacy values "PULSEGEN_0 to PULSEGEN_3" and
"NOT_PULSEGEN_0 to NOT_PULSEGEN_3".

Note that values "PULSEGEN_0 to PULSEGEN_3" and "NOT_PULSEGEN_0 to
NOT_PULSEGEN_3" are legacy parameters. If you set the parameter to one of these values the
respective trigger module will be used. Reading the parameter will always include the camera
index.

For example if you set FG_TRIGGEROUT_SELECT_GPO_0 for DMA index 1 to PULSEGEN_0
on a multi-cam applet you will use the trigger module of camera B. Reading the parameter results
in returning CAM_B_PULSEGEN0.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 66

Table 6.36. Parameter properties of TriggerOutSelectGPO0

Property Value
Name TriggerOutSelectGPO0
Display Name Trigger Out Select GPO 0
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values VCC VCC

GND GND
CamAPulseGenerator0 Cam A Pulse Generator 0
CamAPulseGenerator1 Cam A Pulse Generator 1
CamAPulseGenerator2 Cam A Pulse Generator 2
CamAPulseGenerator3 Cam A Pulse Generator 3
NotCamAPulseGenerator0 Not Cam A Pulse Generator 0
NotCamAPulseGenerator1 Not Cam A Pulse Generator 1
NotCamAPulseGenerator2 Not Cam A Pulse Generator 2
NotCamAPulseGenerator3 Not Cam A Pulse Generator 3
CamBPulseGenerator0 Cam B Pulse Generator 0
CamBPulseGenerator1 Cam B Pulse Generator 1
CamBPulseGenerator2 Cam B Pulse Generator 2
CamBPulseGenerator3 Cam B Pulse Generator 3
NotCamBPulseGenerator0 Not Cam B Pulse Generator 0
NotCamBPulseGenerator1 Not Cam B Pulse Generator 1
NotCamBPulseGenerator2 Not Cam B Pulse Generator 2
NotCamBPulseGenerator3 Not Cam B Pulse Generator 3
CamCPulseGenerator0 Cam C Pulse Generator 0
CamCPulseGenerator1 Cam C Pulse Generator 1
CamCPulseGenerator2 Cam C Pulse Generator 2
CamCPulseGenerator3 Cam C Pulse Generator 3
NotCamCPulseGenerator0 Not Cam C Pulse Generator 0
NotCamCPulseGenerator1 Not Cam C Pulse Generator 1
NotCamCPulseGenerator2 Not Cam C Pulse Generator 2
NotCamCPulseGenerator3 Not Cam C Pulse Generator 3
CamDPulseGenerator0 Cam D Pulse Generator 0
CamDPulseGenerator1 Cam D Pulse Generator 1
CamDPulseGenerator2 Cam D Pulse Generator 2
CamDPulseGenerator3 Cam D Pulse Generator 3
NotCamDPulseGenerator0 Not Cam D Pulse Generator 0
NotCamDPulseGenerator1 Not Cam D Pulse Generator 1
NotCamDPulseGenerator2 Not Cam D Pulse Generator 2
NotCamDPulseGenerator3 Not Cam D Pulse Generator 3
BypassGPI0 Bypass GPI 0
NotBypassGPI0 Not Bypass GPI 0
BypassGPI1 Bypass GPI 1
NotBypassGPI1 Not Bypass GPI 1
BypassGPI2 Bypass GPI 2
NotBypassGPI2 Not Bypass GPI 2
BypassGPI3 Bypass GPI 3
NotBypassGPI3 Not Bypass GPI 3
BypassGPI4 Bypass GPI 4
NotBypassGPI4 Not Bypass GPI 4
BypassGPI5 Bypass GPI 5
NotBypassGPI5 Not Bypass GPI 5
BypassGPI6 Bypass GPI 6
NotBypassGPI6 Not Bypass GPI 6
BypassGPI7 Bypass GPI 7
NotBypassGPI7 Not Bypass GPI 7
BypassFrontGPI0 Bypass Front GPI 0
NotBypassFrontGPI0 Not Bypass Front GPI 0
BypassFrontGPI1 Bypass Front GPI 1
NotBypassFrontGPI1 Not Bypass Front GPI 1
BypassFrontGPI2 Bypass Front GPI 2
NotBypassFrontGPI2 Not Bypass Front GPI 2
BypassFrontGPI3 Bypass Front GPI 3
NotBypassFrontGPI3 Not Bypass Front GPI 3
PulseGenerator0 Pulse Generator 0
PulseGenerator1 Pulse Generator 1
PulseGenerator2 Pulse Generator 2
PulseGenerator3 Pulse Generator 3
NotPulseGenerator0 Not Pulse Generator 0
NotPulseGenerator1 Not Pulse Generator 1
NotPulseGenerator2 Not Pulse Generator 2
NotPulseGenerator3 Not Pulse Generator 3

Default value NotCamAPulseGenerator0

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 67

Example 6.35. Usage of TriggerOutSelectGPO0

/* Set */ TriggerOutSelectGPO0 = NotCamAPulseGenerator0;
/* Get */ value_ = TriggerOutSelectGPO0;

6.5.12.2. TriggerOutSelectFrontGPO0 et al.

Note

This description applies also to the following parameters: TriggerOutSelectFrontGPO1

Select the source for the output on the repsective Front GPO.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 68

Table 6.37. Parameter properties of TriggerOutSelectFrontGPO0

Property Value
Name TriggerOutSelectFrontGPO0
Display Name Trigger Out Select Front GPO 0
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values VCC VCC

GND GND
CamAPulseGenerator0 Cam A Pulse Generator 0
CamAPulseGenerator1 Cam A Pulse Generator 1
CamAPulseGenerator2 Cam A Pulse Generator 2
CamAPulseGenerator3 Cam A Pulse Generator 3
NotCamAPulseGenerator0 Not Cam A Pulse Generator 0
NotCamAPulseGenerator1 Not Cam A Pulse Generator 1
NotCamAPulseGenerator2 Not Cam A Pulse Generator 2
NotCamAPulseGenerator3 Not Cam A Pulse Generator 3
CamBPulseGenerator0 Cam B Pulse Generator 0
CamBPulseGenerator1 Cam B Pulse Generator 1
CamBPulseGenerator2 Cam B Pulse Generator 2
CamBPulseGenerator3 Cam B Pulse Generator 3
NotCamBPulseGenerator0 Not Cam B Pulse Generator 0
NotCamBPulseGenerator1 Not Cam B Pulse Generator 1
NotCamBPulseGenerator2 Not Cam B Pulse Generator 2
NotCamBPulseGenerator3 Not Cam B Pulse Generator 3
CamCPulseGenerator0 Cam C Pulse Generator 0
CamCPulseGenerator1 Cam C Pulse Generator 1
CamCPulseGenerator2 Cam C Pulse Generator 2
CamCPulseGenerator3 Cam C Pulse Generator 3
NotCamCPulseGenerator0 Not Cam C Pulse Generator 0
NotCamCPulseGenerator1 Not Cam C Pulse Generator 1
NotCamCPulseGenerator2 Not Cam C Pulse Generator 2
NotCamCPulseGenerator3 Not Cam C Pulse Generator 3
CamDPulseGenerator0 Cam D Pulse Generator 0
CamDPulseGenerator1 Cam D Pulse Generator 1
CamDPulseGenerator2 Cam D Pulse Generator 2
CamDPulseGenerator3 Cam D Pulse Generator 3
NotCamDPulseGenerator0 Not Cam D Pulse Generator 0
NotCamDPulseGenerator1 Not Cam D Pulse Generator 1
NotCamDPulseGenerator2 Not Cam D Pulse Generator 2
NotCamDPulseGenerator3 Not Cam D Pulse Generator 3
BypassGPI0 Bypass GPI 0
NotBypassGPI0 Not Bypass GPI 0
BypassGPI1 Bypass GPI 1
NotBypassGPI1 Not Bypass GPI 1
BypassGPI2 Bypass GPI 2
NotBypassGPI2 Not Bypass GPI 2
BypassGPI3 Bypass GPI 3
NotBypassGPI3 Not Bypass GPI 3
BypassGPI4 Bypass GPI 4
NotBypassGPI4 Not Bypass GPI 4
BypassGPI5 Bypass GPI 5
NotBypassGPI5 Not Bypass GPI 5
BypassGPI6 Bypass GPI 6
NotBypassGPI6 Not Bypass GPI 6
BypassGPI7 Bypass GPI 7
NotBypassGPI7 Not Bypass GPI 7
BypassFrontGPI0 Bypass Front GPI 0
NotBypassFrontGPI0 Not Bypass Front GPI 0
BypassFrontGPI1 Bypass Front GPI 1
NotBypassFrontGPI1 Not Bypass Front GPI 1
BypassFrontGPI2 Bypass Front GPI 2
NotBypassFrontGPI2 Not Bypass Front GPI 2
BypassFrontGPI3 Bypass Front GPI 3
NotBypassFrontGPI3 Not Bypass Front GPI 3
PulseGenerator0 Pulse Generator 0
PulseGenerator1 Pulse Generator 1
PulseGenerator2 Pulse Generator 2
PulseGenerator3 Pulse Generator 3
NotPulseGenerator0 Not Pulse Generator 0
NotPulseGenerator1 Not Pulse Generator 1
NotPulseGenerator2 Not Pulse Generator 2
NotPulseGenerator3 Not Pulse Generator 3

Default value NotCamAPulseGenerator0

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 69

Example 6.36. Usage of TriggerOutSelectFrontGPO0

/* Set */ TriggerOutSelectFrontGPO0 = NotCamAPulseGenerator0;
/* Get */ value_ = TriggerOutSelectFrontGPO0;

6.5.12.3. OutStatistics

The output statistics module counts the number of output pulses. The source can be selected by parameter
TriggerOutStatisticsSource. The count value can be read from parameter TriggerOutStatisticsPulseCount.
Parameter TriggerOutStatisticsSource also selects the source for the missing frame detection functionality.

6.5.12.3.1. TriggerExceededPeriodLimits

This read-only register has value Yes if the input signal frequency exceeded the maximum allowed frequency
defined by parameter TriggerOutputFrequency. If the queue is enabled, the register is only set if the queue is
full and cannot store a new input pulse. Reading the register will not reset it. It is required to reset the register
by writing to TriggerExceededPeriodLimitsClear.

Table 6.38. Parameter properties of TriggerExceededPeriodLimits

Property Value
Name TriggerExceededPeriodLimits
Display Name Trigger Exceeded Period Limits
Interface IEnumeration
Access policy Read-Only
Visibility Beginner
Allowed values Yes Yes

No No

Example 6.37. Usage of TriggerExceededPeriodLimits

/* Get */ value_ = TriggerExceededPeriodLimits;

6.5.12.3.2. TriggerExceededPeriodLimitsClear

Reset TriggerExceededPeriodLimits with this parameter.

Table 6.39. Parameter properties of TriggerExceededPeriodLimitsClear

Property Value
Name TriggerExceededPeriodLimitsClear
Display Name Clear Exceeded Period Limits Register
Interface ICommand
Access policy Write/Change
Visibility Beginner

Example 6.38. Usage of TriggerExceededPeriodLimitsClear

/* Set */ TriggerExceededPeriodLimitsClear();

6.5.12.3.3. TriggerOutStatisticsSource

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 70

Table 6.40. Parameter properties of TriggerOutStatisticsSource

Property Value
Name TriggerOutStatisticsSource
Display Name Trigger Out Statistics Source
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values PulseGenerator0 Pulse Generator 0

PulseGenerator1 Pulse Generator 1
PulseGenerator2 Pulse Generator 2
PulseGenerator3 Pulse Generator 3

Default value PulseGenerator0

Example 6.39. Usage of TriggerOutStatisticsSource

/* Set */ TriggerOutStatisticsSource = PulseGenerator0;
/* Get */ value_ = TriggerOutStatisticsSource;

6.5.12.3.4. TriggerOutStatisticsPulseCount
Output pulse count read register. Select the source for the pulse counter by parameter
TriggerOutStatisticsSource.
Table 6.41. Parameter properties of TriggerOutStatisticsPulseCount

Property Value
Name TriggerOutStatisticsPulseCount
Display Name Trigger Out Statistics Pulse Count
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 65535
Stepsize 1

Unit of measure pulses

Example 6.40. Usage of TriggerOutStatisticsPulseCount

/* Get */ value_ = TriggerOutStatisticsPulseCount;

6.5.12.3.5. TriggerOutStatisticsPulseCountClear
Output pulse count register clear.
Table 6.42. Parameter properties of TriggerOutStatisticsPulseCountClear

Property Value
Name TriggerOutStatisticsPulseCountClear
Display Name Trigger Out Statistics Pulse Count Clear
Interface ICommand
Access policy Write/Change
Visibility Beginner

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 71

Example 6.41. Usage of TriggerOutStatisticsPulseCountClear

/* Set */ TriggerOutStatisticsPulseCountClear();

6.5.12.3.6. MissingCameraFrameResponse

This applet is equipped with a detection of missing camera frame responses to trigger pulses. If the camera
does not send a frame for each output trigger pulse, the register is set to Yes until cleared by writing to parameter
MissingCameraFrameResponseClear.

The idea of the frame loss detection is that for every trigger pulse generated by the trigger system, the camera
sends a frame to the frame grabber. If a trigger pulse gets lost, or the camera cannot send a frame, this register
is set to Yes. Technically, between two output signal edges, an incoming image has to exist. Or in other words:
There must not be two or more successive trigger start edges without a valid frame in between. The behavior
depends on the camera timing and interface. For very high frame rates the latency of sending an image can
get bigger so that the detection mechanism of missing responses is not working. In this case you cannot use
this parameter to detect missing triggers. Use the trigger and frame counters instead. You can also use the
CXP source tag and trigger acknowledges to detect lost frames or trigger. The following figure illustrates the
behavior.

Figure 6.21. Missing Camera Frame Response

CC 0

FVAL

Two successive rising CC
edges without a rising FVAL

edge in between
-> missing frame

response to 0

1 2 3

response to 1 response to 3

4

The pulse form generator allocated to the camera trigger signal line carrying the image trigger pulses has to
be selected by TriggerOutStatisticsSource. The missing frame response system might not work correctly for
all camera models due to different timings.

Select Camera Control/Trigger Signal Line

Ensure you select the pulse form generator feeding the camera trigger signal line which carries the
image trigger pulses by setting parameter TriggerOutStatisticsSource to the respective source.

Acquisition Start Before Trigger Activation

You must start the acquisition before activating the trigger. Otherwise, the trigger pulses sent will
get lost. Any changes of the camera configuration might result in invalid data transfers.

Events for Missing Frame Response

If you want to monitor the exact moment of a missing frame response and the exact number of
missing frames, use event FrameTriggerMissed. This approach exists for all 4 cameras connected
to the applet addressed by its index.

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 72

Table 6.43. Parameter properties of MissingCameraFrameResponse

Property Value
Name MissingCameraFrameResponse
Display Name Missing Camera Frame Response
Interface IEnumeration
Access policy Read-Only
Visibility Beginner
Allowed values Yes Yes

No No

Example 6.42. Usage of MissingCameraFrameResponse

/* Get */ value_ = MissingCameraFrameResponse;

6.5.12.3.7. MissingCameraFrameResponseClear

Clear the MissingCameraFrameResponse flag by writing to this parameter.

Table 6.44. Parameter properties of MissingCameraFrameResponseClear

Property Value
Name MissingCameraFrameResponseClear
Display Name Clear Missing Camera Frame Response Register
Interface ICommand
Access policy Write/Change
Visibility Beginner

Example 6.43. Usage of MissingCameraFrameResponseClear

/* Set */ MissingCameraFrameResponseClear();

6.5.12.3.8. TriggerExceededPeriodLimits

The event is generated for each lost input trigger pulse. A trigger loss can occur if the input frequency is higher
than the maximum allowed frequency set by parameter TriggerOutputFrequency. If the trigger queue is enabled,
the events will only be generated if the queue is full i.e. for overflows. In generator and synchronized trigger
modes, the events will not be generated. Except for the timestamp, the event has no additional data included.

For a general explanation on events see Event.

6.5.12.3.9. FrameTriggerMissed

The missing camera frame response event is generated for each camera output trigger pulse with no frame
response. Please read the description of the detection and the documentation on how to configure the
mechanism in Chapter 6.5.12.3.6.1 carefully. If the mechanism is compatible with the used camera and set
up correct, the number of events is equal to the number of lost frames. Except for the timestamp, the event
has no additional data included.

For a general explanation on events see Event.

6.5.13. OutputEvents

Trigger

imaFlex CXP-12 Quad Acq_QuadCXP12Area 73

You can select one of the trigger outputs to generate a software event. i.e. a software callback function. Use
parameter TriggerOutputEventSelect to specified the source pulse form generator for the event. The events
name itself is AcquisitionTrigger.

For a general explanation on events check Event.

6.5.13.1. TriggerOutputEventSelect

Select the source for the output event AcquisitionTrigger respectively AcquisitionTrigger, AcquisitionTrigger and
AcquisitionTrigger with this register. One of the pulse form generators can be selected.

Table 6.45. Parameter properties of TriggerOutputEventSelect

Property Value
Name TriggerOutputEventSelect
Display Name Output Event Select
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values PulseGenerator0 Pulse Generator 0

PulseGenerator1 Pulse Generator 1
PulseGenerator2 Pulse Generator 2
PulseGenerator3 Pulse Generator 3

Default value PulseGenerator0

Example 6.44. Usage of TriggerOutputEventSelect

/* Set */ TriggerOutputEventSelect = PulseGenerator0;
/* Get */ value_ = TriggerOutputEventSelect;

6.5.13.2. AcquisitionTrigger

This event is generated for each start of an output trigger pulse. The respective pulse form generator has to be
selected by parameter TriggerOutputEventSelect. Except for the timestamp, the event has no additional data
included. Keep in mind that a high output frequency can cause high interrupt rates which might slow down
the system.

imaFlex CXP-12 Quad Acq_QuadCXP12Area 74

Chapter 7. BufferStatus
The applet processes image data as fast as possible. Any image data sent by the camera is immediately
processed and sent to the PC. The latency is minimal. In general, only one concurrent image line is stored
and processed in the frame grabber. However, the transfer bandwidth to the PC via DMA channel can vary
caused by interrupts, other hardware and the current CPU load. Furthermore, if operated in selective mode,
it is possible to queue buffer slower than the camera offers new images and therefore generate an overflow
condition on the frame grabber. Also, the camera frame rate can vary due to an fluctuating trigger. For these
cases, the applet is equipped with a memory to buffer the input frames. The fill level of the buffer can be
obtained by reading from parameter FillLevel.

In normal operation conditions the buffer will always remain almost empty. For fluctuating camera bandwidths
or for short and fast acquisitions, the buffer can easily fill up quickly. Of course, the input bandwidth must not
exceed the maximum bandwidth of the applet. Check Section 1.2, 'Bandwidth' for more information.

If the buffer's fill level reaches 100%, the applet is in overflow condition, as no more data can be buffered and
camera data will be discarded. This can result in two different behaviors:

• Corrupted Frames:

The transfer of a current frame is interrupted by an overflow. This means, the first pixels or lines of the frame
were transfered into the buffer, but not the full frame. The output of the applet i.e. the DMA transfer will be
shorter. The output image will not have it's full height. These images will be marked incomplete. Check the
Basler GenTL documentation to learn on how to identify incompleted buffers (https://www.baslerweb.com/
en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/).

• Lost Frames:

A full camera frame was discarded due to a full buffer memory. No DMA transfer will exist for the discarded
frame. This means the number of applet output images can differ from the number of applet input images.

The buffer overflow threshold OverflowOnThreshold and OverflowSyncOnThreshold default ensures that under
normal conditions frames can be completed or will be fully dropped so that corrupted frames are avoide

A way to detect the overflows is to read parameter Overflow or check for event Overflow. Reading from the
parameter will provide information about an overflow condition. As soon as the parameter is read, it will reset.
Using the parameter an overflow condition can be detect, but it is not possible to obtain the exact image number
and the moment. For this, the overflow event can be used.

7.1. FillLevel
The fill-level of the frame grabber buffers used in this applet can be read-out by use of this parameter. The
value allows to check if the mean input bandwidth of the camera is to high to be processed with the applet.
Table 7.1. Parameter properties of FillLevel

Property Value
Name FillLevel
Display Name Fill Level
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 100
Stepsize 1

Unit of measure %

https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/

BufferStatus

imaFlex CXP-12 Quad Acq_QuadCXP12Area 75

Example 7.1. Usage of FillLevel

/* Get */ value_ = FillLevel;

7.2. Overflow
If the applet runs into overflow, a value "1" can be read by the use of this parameter. Note that an overflow
results in loss of images. To avoid overflows reduce the mean input bandwidth.

The parameter is reset at each readout cycle. The program microDisplayX will continuously poll the value, thus
the occurrence of an overflow might not be visible in microDisplayX.

A more effective and robust way is to detect overflows is the use of the event system.

Table 7.2. Parameter properties of Overflow

Property Value
Name Overflow
Display Name Buffer overflow
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 1
Stepsize 1

Example 7.2. Usage of Overflow

/* Get */ value_ = Overflow;

7.3. OverflowOffThreshold
The Overflow state will be deactivated once the buffer Fillevel (FillLevel) will fall below this value. As long as
the applet remains in overflow state all images arriving will be discarded. This will result in Overflow events
with a set "lost" flag.

Table 7.3. Parameter properties of OverflowOffThreshold

Property Value
Name OverflowOffThreshold
Display Name Overflow Off Threshold
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0

Maximum 100.0
Stepsize 0.5

Default value 50.0

Example 7.3. Usage of OverflowOffThreshold

/* Set */ OverflowOffThreshold = 50.0;
/* Get */ value_ = OverflowOffThreshold;

BufferStatus

imaFlex CXP-12 Quad Acq_QuadCXP12Area 76

7.4. OverflowOnThreshold
The applet will enter Overflow state once the buffer Fillevel exceeds this filllevel (FillLevel). If the overflow
state is active images will be stopped imidiately. This may lead to an incomplete frame. Incomplete frames are
marked incomplete in the image Tag and an overflow event can be generated.

Table 7.4. Parameter properties of OverflowOnThreshold

Property Value
Name OverflowOnThreshold
Display Name Overflow On Threshold
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0

Maximum 100.0
Stepsize 0.5

Default value 99.5

Example 7.4. Usage of OverflowOnThreshold

/* Set */ OverflowOnThreshold = 99.5;
/* Get */ value_ = OverflowOnThreshold;

7.5. OverflowSyncOnThreshold
The applet will enter Overflow state once the buffer fillevel (FillLevel) exceeds this filllevel and the currently
arriving frame is stored to the buffer. If the applet remains in overflow state frames might be droped. If the buffer
falls below this fillevel frames are accepted again. There is no hysteresis for this threshold.

Table 7.5. Parameter properties of OverflowSyncOnThreshold

Property Value
Name OverflowSyncOnThreshold
Display Name Overflow Sync On Threshold
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0

Maximum 100.0
Stepsize 0.5

Default value 80.0

Example 7.5. Usage of OverflowSyncOnThreshold

/* Set */ OverflowSyncOnThreshold = 80.0;
/* Get */ value_ = OverflowSyncOnThreshold;

7.6. OverflowEventSelect
The Overflow Event. Allows to generate events if one of the following conditions is meet.

BufferStatus

imaFlex CXP-12 Quad Acq_QuadCXP12Area 77

Table 7.6. Event select for Overflow

Value Description
Incomplete Each incomplete frame will generate an Event

containing the information that the frame is incomplete
and the frameID

Lost Each lost frame will generate an Event containing the
information that the frame is lost and the frameID

IncompleteLost Each lost or incomplete frame will generate an Event
containing the information that the frame is lost/
incomplete and the frameID

OK Each correct frame will generate an Event containing
the information that the frame is transfered correct and
the frameID of the frame

IncompleteOK Each incomplete or correct frame will generate an
Event containing the information that the frame is
correct or incomplete and the frameID

LostOK Each lost or correct frame will generate an Event
containing the information that the frame is correct or
lost and the frameID

All Each frame will generate an Event containing the
status(lost, incomplete or correct) of the frame and the
frameID

Table 7.7. Parameter properties of OverflowEventSelect

Property Value
Name OverflowEventSelect
Display Name Overflow Event Select
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values Incomplete Incomplete

Lost Lost
IncompleteLost Incomplete Lost
OK OK
IncompleteOK Incomplete OK
LostOK Lost OK
All All

Default value IncompleteLost

Example 7.6. Usage of OverflowEventSelect

/* Set */ OverflowEventSelect = IncompleteLost;
/* Get */ value_ = OverflowEventSelect;

7.7. OverflowEvents
In programming or runtime environments, a callback function is a piece of executable code that is passed as
an argument, which is expected to call back (execute) exactly that time an event is triggered. This applet can
generate some software callback events based on the memory overflow condition as explained in the following
section. These events are not related to a special camera functionality. Other event sources are described in
additional sections of this document.

BufferStatus

imaFlex CXP-12 Quad Acq_QuadCXP12Area 78

The Basler Framegrabber SDK and pylon SDK via GenTL enables an application to get these event notifications
about certain state changes at the data flow from camera to RAM and the image and trigger processing as well.
Please consult the Basler Framegrabber SDK, pylon SDK or GenTL documentation for more details concerning
the implementation of this functionality.

7.7.1. Overflow

Overflow events are generated for each truncated, lost or complete frame. The selection can be done using
OverflowEventSelect. The overflow event contains data, namely the type of overflow, the image number and
the timestamp. The following figure illustrates the event data. Data is contained in a 64-bit data packet. The
first 16 bits contain the frame-ID from the camera. Bits 32 to 47 provide an overflow mask.

Figure 7.1. Illustration of Overflow Data Packet

Note that the frame-ID is taken from the camera stream. See Section 1.5, 'Frame ID' for more information. The
frame-ID is a 16-bit value. If its maximum is reached, the frame-ID starts at zero again. If the frame truncated
flag is set, the frame with the frame-ID in the event is truncated i.e. it doesn't have its full length but is still
transferred via DMA channel. If the frame lost flag is set, the frame with the frame-ID in the event was fully
discarded. No DMA transfer exists for this frame. The truncated frame flag and the frame lost flag never
occur for the same event.

Table 7.8. Event parameters of Overflow

Name Interface Description
EventOverflowFrameIdIInteger Camera frame-ID for area scan applets or grabber frame-ID for line

scan applets.

EventOverflowIsTruncatedIBoolean Frame is truncated.

EventOverflowIsLostIBoolean Frame is lost.

EventOverflowIsCompleteIBoolean Frame is complete.

imaFlex CXP-12 Quad Acq_QuadCXP12Area 79

Chapter 8. ImageSelector
The Image Selector allows the user to cut out a period of p images from the image stream and select a particular
image n from it.

The following example will explain the settings of p and n which represent the frame grabber parameters
ImageSelectPeriod and ImageSelect. Suppose two frame grabbers being connected to a camera signal
multiplexer, providing all camera images to both devices. Grabber 0 is required to process all even frames,
while grabber 1 is required to process all odd frames. The settings will then be:

1. Grabber 0:

• ImageSelectPeriod = 2

ImageSelect = 0

2. Grabber 1:

• ImageSelectPeriod = 2

ImageSelect = 1

Ensure that both grabbers are used synchronously. This is possible with a triggered camera. To do so, initialize
and configure both frame grabbers. Configure the camera for external trigger and the trigger system of master
grabber which is directly connected to the camera. Next, the acquisitions of both grabbers have to be started
and finally, the trigger generation has to be enabled, generally by setting TriggerState to active. Now the camera
will start sending image data and the grabbers acquire those synchronously. More information can be found
in the trigger chapter Chapter 6, 'Trigger'.

8.1. ImageSelectPeriod
This parameter specifies the period length p. The parameter can be changed at any time. However, changing
during acquisition can result in an asynchronous switching which will result in the loss of a synchronous
grabbing. It is recommended to change the parameter only when the acquisition is stopped.

The parameter's value has to be greater than ImageSelect.

Table 8.1. Parameter properties of ImageSelectPeriod

Property Value
Name ImageSelectPeriod
Display Name Image Select Period
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 1

Maximum 256
Stepsize 1

Default value 1
Unit of measure image

Example 8.1. Usage of ImageSelectPeriod

/* Set */ ImageSelectPeriod = 1;
/* Get */ value_ = ImageSelectPeriod;

ImageSelector

imaFlex CXP-12 Quad Acq_QuadCXP12Area 80

8.2. ImageSelect
The parameter ImageSelect specifies a particular image from the image set defined by ImageSelectPeriod. This
parameter can be changed at any time. However, changing during acquisition can result in an asynchronous
switching which will result in the loss of a synchronous grabbing. It is recommended to change the parameter
only when the acquisition is stopped.

The parameter's value has to be less than ImageSelectPeriod.

Table 8.2. Parameter properties of ImageSelect

Property Value
Name ImageSelect
Display Name Image Select
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0

Maximum 255
Stepsize 1

Default value 0
Unit of measure image

Example 8.2. Usage of ImageSelect

/* Set */ ImageSelect = 0;
/* Get */ value_ = ImageSelect;

imaFlex CXP-12 Quad Acq_QuadCXP12Area 81

Chapter 9. WhiteBalance
The applet enables a spectral adaptation of the image to the lighting situation of the application. The color
values for the red, green and blue components can be individually enhanced or reduced by a scaling factor to
adjust the spectral sensibility of the camera sensor.

The applet Acq_QuadCXP12Area performs a Bayer de-mosaicing. The white balancing is performed prior to
the Bayer de-mosaicing, to ensure the correction of the raw data and avoid subsequent faults during processing.

9.1. ScalingFactorGreen
Table 9.1. Parameter properties of ScalingFactorGreen

Property Value
Name ScalingFactorGreen
Display Name Scaling Factor Green
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0

Maximum 3.9990234375
Stepsize 9.765625E-4

Default value 1.0

Example 9.1. Usage of ScalingFactorGreen

/* Set */ ScalingFactorGreen = 1.0;
/* Get */ value_ = ScalingFactorGreen;

9.2. ScalingFactorRed
Table 9.2. Parameter properties of ScalingFactorRed

Property Value
Name ScalingFactorRed
Display Name Scaling Factor Red
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0

Maximum 3.9990234375
Stepsize 9.765625E-4

Default value 1.0

Example 9.2. Usage of ScalingFactorRed

/* Set */ ScalingFactorRed = 1.0;
/* Get */ value_ = ScalingFactorRed;

9.3. ScalingFactorBlue

WhiteBalance

imaFlex CXP-12 Quad Acq_QuadCXP12Area 82

Table 9.3. Parameter properties of ScalingFactorBlue

Property Value
Name ScalingFactorBlue
Display Name Scaling Factor Blue
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0

Maximum 3.9990234375
Stepsize 9.765625E-4

Default value 1.0

Example 9.3. Usage of ScalingFactorBlue

/* Set */ ScalingFactorBlue = 1.0;
/* Get */ value_ = ScalingFactorBlue;

imaFlex CXP-12 Quad Acq_QuadCXP12Area 83

Chapter 10. ColorConverter
The color converter module is used to convert the input pixel format to an output pixel format. The conversion
is performed post to the Bayer de-mosicing and just before the lookup table.

This applet can perform the following conversions.

Table 10.1. Color Conversion

Input Format Mono RGB Bayer YCbCr
Output Format
Mono yes yes yes N/A

RGB yes yes yes N/A

Bayer N/A N/A yes N/A

YCbCr N/A N/A N/A yes

By setting the input and output format the conversion is automatically applied if a conversion is possible.
Otherwise the applet will output unchanged values. See PixelFormat and Format.

imaFlex CXP-12 Quad Acq_QuadCXP12Area 84

Chapter 11. LookupTable
This Acquisition Applet includes a full resolution lookup table (LUT) for each of the three color components.
Settings are applied to the acquired images just before transferring them to the host PC. Thus, it is the last
pre-processing step on the frame grabber.

A lookup table includes one entry for every allowed input pixel value. The pixel value will be replaced by the
value of the lookup table element. In other words, a new value is assigned to each pixel value. This can be
used for image quality enhancements such as an added offset, a gain factor or gamma correction which can
be performed by use of the processing module of this applet in a convenient way (see Module Chapter 12,
'Processing'). The lookup table can also be loaded with custom values. Application areas are custom image
enhancements or correct pixel classifications.

This applet is processing data with an internal resolution of 16 bits. But the lookup table has 14 input bits i.e.
pixel values can be in the range [0, 16383]. For each of these 16383 elements, a table entry exists containing a
new output value. The new values are in the range from 0 to 65536. All color components are treated separately.
Since this applet uses 16 bit internally, consider that all values need to represent this value range. This LUT
is applied to all pixel values before Format is applied. The input values for the LUT are aligned to the most
significant bit (MSB).

In the following the parameters to use the lookup table are explained. Parameter LutType is important to be
set correctly as it defines the lookup table operation mode.

11.1. LutEnable
It is possible to disable the functionality of this lookup table. The intenal processor enables a convenient way
to improve the image quality using parameters such as offset, gain and gamma. By disabling the lookup table
the processing functions are not available anymore. See category Chapter 12, 'Processing' for a more detailed
documentation concerning this. Set this parameter to On to use the look up table. By default it is set to Off
disabling the lookup table functionality itself and the related processing functions.

Table 11.1. Parameter properties of LutEnable

Property Value
Name LutEnable
Display Name Enabled
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values On On

Off Off

Default value Off

Example 11.1. Usage of LutEnable

/* Set */ LutEnable = Off;
/* Get */ value_ = LutEnable;

11.2. LutType
There exist two basic possibilities to use and configure the lookup table. One possibility is to use the internal
processor which allows a convenient way to improve the image quality using parameters such as offset, gain

LookupTable

imaFlex CXP-12 Quad Acq_QuadCXP12Area 85

and gamma. Check category Chapter 12, 'Processing' for more detailed documentation. Set this parameter to
LutTypeProcessing to use the processor.

The second possibility to use the lookup table is to load a file containing custom values to the lookup table. Set
the parameter to UserFile to enable the possibility to load a custom file with lookup table entries.

Beside these two possibilities it is always possible to directly write to the lookup table entries using the field
parameters LutValueRed, LutValueGreen and LutValueBlue. The use of these parameters will overwrite the
settings made with the processor or the custom input file. Vice versa, changing a processing parameter or
loading a custom lookup table file, will overwrite the settings made by the field parameters.

Table 11.2. Parameter properties of LutType

Property Value
Name LutType
Display Name Type
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values LutTypeProcessing Processor

UserFile User File

Default value LutTypeProcessing

Example 11.2. Usage of LutType

/* Set */ LutType = LutTypeProcessing;
/* Get */ value_ = LutType;

11.3. LutValue

Table 11.3. Parameter properties of LutValue

Property Value
Name LutValue
Display Name LUT Values
Interface IInteger (Field)
Field Size 16384
Access policy Read/Write/Change
Visibility Beginner
Default value 0

Example 11.3. Usage of LutValue

/* Set */ for (i = 0; i < 16384; ++i)
{
 LutValueSelector = i;
 LutValue = 0;
}
/* Get */ for (i = 0; i < 16384; ++i)
{
 LutValueSelector = i;
 value_ = LutValue;
}

LookupTable

imaFlex CXP-12 Quad Acq_QuadCXP12Area 86

11.4. LutValueRed

Table 11.4. Parameter properties of LutValueRed

Property Value
Name LutValueRed
Display Name Red LUT Values
Interface IInteger (Field)
Field Size 16384
Access policy Read/Write/Change
Visibility Beginner
Default value 0

Example 11.4. Usage of LutValueRed

/* Set */ for (i = 0; i < 16384; ++i)
{
 LutValueRedSelector = i;
 LutValueRed = 0;
}
/* Get */ for (i = 0; i < 16384; ++i)
{
 LutValueRedSelector = i;
 value_ = LutValueRed;
}

11.5. LutValueGreen

Table 11.5. Parameter properties of LutValueGreen

Property Value
Name LutValueGreen
Display Name Green LUT Values
Interface IInteger (Field)
Field Size 16384
Access policy Read/Write/Change
Visibility Beginner
Default value 0

Example 11.5. Usage of LutValueGreen

/* Set */ for (i = 0; i < 16384; ++i)
{
 LutValueGreenSelector = i;
 LutValueGreen = 0;
}
/* Get */ for (i = 0; i < 16384; ++i)
{
 LutValueGreenSelector = i;
 value_ = LutValueGreen;
}

11.6. LutValueBlue

LookupTable

imaFlex CXP-12 Quad Acq_QuadCXP12Area 87

Table 11.6. Parameter properties of LutValueBlue

Property Value
Name LutValueBlue
Display Name Blue LUT Values
Interface IInteger (Field)
Field Size 16384
Access policy Read/Write/Change
Visibility Beginner
Default value 0

Example 11.6. Usage of LutValueBlue

/* Set */ for (i = 0; i < 16384; ++i)
{
 LutValueBlueSelector = i;
 LutValueBlue = 0;
}
/* Get */ for (i = 0; i < 16384; ++i)
{
 LutValueBlueSelector = i;
 value_ = LutValueBlue;
}

11.7. LutCustomFile
If parameter LutType is set to UserFile, the according path and filename to the file containing the custom lookup
table entries can be set here. If the file is valid, the file values will be loaded to the lookup table. If the file is
invalid, the call to this parameter will return an error.

A convenient way of getting a draft file, is to save the current lookup table settings to file using parameter
LutSaveFile.

Please make sure to activate the Type of LUT LutType to "UserFile"/UserFile in order to make the changes
and file names taking effect.

This section describes the file formats which are in use to fill the so called look-up tables (LUT). The purpose
of a LUT is a transformation of pixel values from a input (source) image to the pixel values of an output image.
This transformation is done by a kind of table, which contains the assignment between these pixel values (input
pixel values - output pixel values). Basically the LUT is defined for gray format and color formats as well. When
defining a LUT for color formats, the definition of tables has to be done for each color component. The LUT
file format consists of 2 parts:

• Header section containing control and description information.

• Main section containing the assignment table for transforming pixel values form a source (input) image to
a destination (output) image.

The following example shows how a grey scale lookup table description could look like:

Lut data file v1.1
id=3;
nrOfElements=4096;
format=0;
number=0;
0,0;
1,1;
2,2;
3,3;

LookupTable

imaFlex CXP-12 Quad Acq_QuadCXP12Area 88

4,4;
5,5;
6,6;
…
4095,4095;

General Properties:

• File format extension should be ".lut"

• LUT file format is an ASCII file format consisting of multiple lines of data.

• Lines are defined by a line separator a <CR> <LF> line feed (0x3D 0x0D 0x0A).

• Lines consist of key / value pairs. Key and value are separated by "=". The value has to be followed by a
semicolon ; (0x3B)

• Formats consist of header data, containing control information and the assignment table for a specific color
component (gray / red, green, blue).

• Basically the LUT file color format follows the same rules as the gray image format. In addition, due to the
fact, that each color component can has its own transformation, the definitions are repeated for each color
component.

The following example shows how a color scale lookup table description could look like:

Lut data file v1.1
[red]
id=0;
nrOfElements=256;
format=0;
number=0;
0,0;
1,1;
..
255,255;
[green]
id=1;
nrOfElements=256;
format=0;
number=0;
0,0;
1,1;
..
255,255;
[blue]
id=2;
nrOfElements=256;
format=0;
number=0;
0,0;
1,1;
..
255,255;

A more detailed explanation of the lookup table file format can be found in the Basler Framegrabber API manual.

Table 11.7. Parameter properties of LutCustomFile

Property Value
Name LutCustomFile
Display Name Load File
Interface IString
Access policy Read/Write/Change
Visibility Beginner
Default value ""

LookupTable

imaFlex CXP-12 Quad Acq_QuadCXP12Area 89

Example 11.7. Usage of LutCustomFile

11.8. LutSaveFile
To save the current lookup table configuration to a file, write the according output filename to this parameter.
Keep in mind that you need to have full write access to the specified path.

Writing the current lookup table settings to a file is also a convenient way to exploit the settings made by the
processor. Moreover, you will get a draft version of the lookup table file format. The values in the output file can
directly be used to be loaded to the lookup table again using parameter LutCustomFile.

Table 11.8. Parameter properties of LutSaveFile

Property Value
Name LutSaveFile
Display Name Save File
Interface IString
Access policy Read/Write/Change
Visibility Beginner
Default value ""

Example 11.8. Usage of LutSaveFile

11.9. AppletProperties
In the following, some properties of the lookup table implementation are listed.

11.9.1. LutImplementationType

In this applet, a full lookup table is implemented and can be setup in a custom way. By default a linear
representation is performed.

Table 11.9. Parameter properties of LutImplementationType

Property Value
Name LutImplementationType
Display Name LUT Implementation Type
Interface IEnumeration
Access policy Read-Only
Visibility Beginner
Allowed values FullLUT Full LUT

KneeLUT Knee LUT

Example 11.9. Usage of LutImplementationType

/* Get */ value_ = LutImplementationType;

11.9.2. LutInputPixelBitDepth

LookupTable

imaFlex CXP-12 Quad Acq_QuadCXP12Area 90

This applet is using 14 lookup table input bits.

Table 11.10. Parameter properties of LutInputPixelBitDepth

Property Value
Name LutInputPixelBitDepth
Display Name LUT Input Pixel Bit Depth
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 16
Stepsize 1

Unit of measure bit

Example 11.10. Usage of LutInputPixelBitDepth

/* Get */ value_ = LutInputPixelBitDepth;

11.9.3. LutOutputPixelBitDepth

This applet is using 16 lookup table output bits.

Table 11.11. Parameter properties of LutOutputPixelBitDepth

Property Value
Name LutOutputPixelBitDepth
Display Name LUT Output Pixel Bit Depth
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 16
Stepsize 1

Unit of measure bit

Example 11.11. Usage of LutOutputPixelBitDepth

/* Get */ value_ = LutOutputPixelBitDepth;

imaFlex CXP-12 Quad Acq_QuadCXP12Area 91

Chapter 12. Processing
A convenient way to improve the image quality are the processing parameters. Using these parameters an
offset, gain and gamma correction can be performed. Moreover, the image can be inverted.

Processor Activation
The processing parameters use the lookup table for determination of the correction values.
For activation of the processing parameters, set LutType of category lookup table to
LutTypeProcessing . Otherwise, parameter changes will have no effect.

All transformations apply in the following order:

1. Offset Correction, range [-1.0, +1.0], identity = 0

2. Gain Correction, range [0, 2^14[, identity = 1.0

3. Gamma Correction, range]0, inf], identity = 1.0

4. Invert, identity = 'off'

In this applet, a full lookup table with m = 14 input bits and n = 16 outputs bits is used to perform the corrections.
Values are determined by

Equation 12.1. LUT Processor without Inversion

Output(x) =

"·
gain ¤

µ
x

214 ¡ 1
+ offset

¶¸ 1
gamma

#
¤
¡
216 ¡ 1

¢
:

If the inversion is used, output values are determined by

Equation 12.2. LUT Processor with Inversion

Output(x) = 216 ¡ 1¡

"·
gain ¤

µ
x

214 ¡ 1
+ offset

¶¸ 1
gamma

#
¤
¡
216 ¡ 1

¢
;

where x represents the input pixel value i.e. is in the range from 0 to 2^14 - 1. If the determined output value
is less than 0, it will be set to 0. If the determined output value is greater than 2^16 - 1 it is set to 2^16 - 1.

This applet processes each color component separately using the same processing parameters for each
component.

If no parameters are changed, i.e. they are set to identity, the output values will be equal to the input values as
shown in the figure below. In the following, you will find detailed explanations for all processing parameters.

Figure 12.1. Lookup Table Processing: Identity

0 (2^m)-1
0

(2^n)-1

m = input bit depth
n = output bit depth

12.1. ProcessingOffset

Processing

imaFlex CXP-12 Quad Acq_QuadCXP12Area 92

The offset is a relative value added to each pixel, which leads to a behavior similar to a brightness controller.
A relative offset means, that e. g. 0.5 adds half of the total brightness to each pixel. In absolute numbers when
using 8 bit/pixel, 128 is added to each pixel (0.5 x 255 = 127.5). If you rather want to add an absolute value
to each pixel do the following calculation: e. g. add -51 to an 8 bit/pixel offset = -51 / 255 = -0.2.Figure 12.2
shows an example of an offset.

Figure 12.2. Lookup Table Processing: Offset

Table 12.1. Parameter properties of ProcessingOffset

Property Value
Name ProcessingOffset
Display Name Offset
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum -1.0

Maximum 1.0
Stepsize 2.220446049250313E-16

Default value 0.0

Example 12.1. Usage of ProcessingOffset

/* Set */ ProcessingOffset = 0.0;
/* Get */ value_ = ProcessingOffset;

12.2. ProcessingGain
The gain is a multiplicative coefficient applied to each pixel, which leads to a behavior similar to a contrast
controller. Each pixel value will be multiplied with the given value. For identity select value 1.0.

Figure 12.3. Lookup Table Processing: Gain

0 (2^m)-1
0

(2^n)-1

m = input bit depth
n = output bit depth

Processing

imaFlex CXP-12 Quad Acq_QuadCXP12Area 93

Table 12.2. Parameter properties of ProcessingGain

Property Value
Name ProcessingGain
Display Name Gain
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0.0

Maximum 16384.0
Stepsize 2.220446049250313E-16

Default value 1.0

Example 12.2. Usage of ProcessingGain

/* Set */ ProcessingGain = 1.0;
/* Get */ value_ = ProcessingGain;

12.3. ProcessingGamma
The gamma correction is a power-law transformation applied to each pixel. Normalized pixel values p ranging
[0, 1.0] transform like p0 = p1=gamma .

Figure 12.4. Lookup Table Processing: Gamma

0 (2^m)-1
0

(2^n)-1

m = input bit depth
n = output bit depth

Table 12.3. Parameter properties of ProcessingGamma

Property Value
Name ProcessingGamma
Display Name Gamma
Interface IFloat
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum -1000.0

Maximum 1000.0
Stepsize 2.220446049250313E-16

Default value 1.0

Example 12.3. Usage of ProcessingGamma

/* Set */ ProcessingGamma = 1.0;
/* Get */ value_ = ProcessingGamma;

Processing

imaFlex CXP-12 Quad Acq_QuadCXP12Area 94

12.4. ProcessingInvert
When ProcessingInvert is set to On, the output is the negative of the input. Normalized pixel values p ranging
[0, 1.0] transform to p0 = 1¡ p.

Figure 12.5. Lookup Table Processing: Invert

0 (2^m)-1
0

(2^n)-1

m = input bit depth
n = output bit depth

Table 12.4. Parameter properties of ProcessingInvert

Property Value
Name ProcessingInvert
Display Name Invert
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values On On

Off Off

Default value Off

Example 12.4. Usage of ProcessingInvert

/* Set */ ProcessingInvert = Off;
/* Get */ value_ = ProcessingInvert;

imaFlex CXP-12 Quad Acq_QuadCXP12Area 95

Chapter 13. OutputFormat
The following parameter can be used to configure the applet's image output format i.e. the format and bit
alignment.

Automatic Adaptation of the Output Format by the GenTL Adaptor
The GenTL adaptor can automatically set the output format based on the camera settings and
a given mapping table. Changing the output format of the applet might get overwritten by the
GenTL adaptor on acquisition start. You can only set the output format if this automatic adaptation
is disabled. See the GenTL documentation parameter AutomaticFormatControl for more
details.

The automatic adaptation applies for parameters PixelFormat, Format, BitAlignment and
CustomBitShiftRight.

Depending on the setting of GenTL interface parameter OutputPackedFormats the automatic
adaptation will either use the same pixel format as coming from the camera or an unpacked PC
output format. Changing the output format of the applet might get overwritten by the GenTL on
acquisition start. You can only set the output format if this automatic adaptation is disabled. See
the GenTL documentation parameter AutomaticFormatControl for more details.

Output Format Setting Defines GenTL Buffer Info
The parameters define the DMA output format and therefore the GenTL buffer info values to inform
the consumer about the used output pixel format of the interface.

13.1. Format
Parameter Format is used to set and determine the output formats of the DMA channels. An output format
value specifies the number of bits and the color format of the output.

This applet has an internal processing bit width of 16 bits. Any selected camera pixel format is mapped to
this internal bit width. Check the camera parameter section to learn about the mapping of the camera bits
to the internal bit width. For a definition on how to map the internal bits to the output bits, check parameter
BitAlignment.

Moreover, the color converter of this applet can convert between different color formats of the input and output.
Check Chapter 10, 'ColorConverter' for more information.

This applet supports the following output formats:

• BGR8 and RGB8: 24 bit BGR/RGB color format with 8 bit/component.

• BGRa8 and RGBa8: Color format with 8 bit/component. Component "a" has value zero.

• BGR10p and RGB10p: 30 bit BGR/RGB color format with 10 bit/component.

30 Bit Output Format
Note that in the 30 bit output format 1 pixel and its 3 color components are distributed over
multiple bytes. Also, two successive pixel might share one byte. The pixel are directly aligned
in memory. Thus 8 successive color components are stored in 10 byte. The DMA transfer might
be filled with random content for the last bytes.

• BGR12p and RGB12p: 36 bit BGR/RGB color format with 12 bit/component.

OutputFormat

imaFlex CXP-12 Quad Acq_QuadCXP12Area 96

36 Bit Output Format
Note that in the 36 bit output format 1 pixel and its 3 color components are distributed over
multiple bytes. Also, two successive pixel might share one byte. The pixel are directly aligned in
memory. Thus 2 successive color components are stored in 3 byte or two pixel in 9 Byte. The
DMA transfer might be filled with random content for the last bytes.

• BGR14p and RGB14p: 42 bit BGR/RGB color format with 14 bit/component.

42 Bit Output Format
Note that in the 42 bit output format 1 pixel and its 3 color components are distributed over
multiple bytes. Also, two successive pixel might share one byte. The pixel are directly aligned in
memory. Thus 4 successive color components are stored in 7 byte or four pixel in 21 Byte. The
DMA transfer might be filled with random content for the last bytes.

• BGR16 and RGB16: 48 bit BGR/RGB color format with 16 bit/component.

BGR vs. RGB Memory Alignement
Note that the color components are either written to the PC buffer in the common blue, green, red
(BGR) or red, green, blue order. So either the blue or red color component is at the lower memory
address.

• Mono8: 8 bit grayscale format

• Mono10p: 10 bit grayscale format

10 Bit Output Format
Note that in the 10 bit output format 1 pixel is distributed over more than one byte. Also, two
successive pixel share one byte. The pixel are directly aligned in memory. Thus 8 successive
pixel are stored in 10 byte. The DMA transfer might be filled with random content for the last
bytes.

• Mono12p: 12 bit grayscale format

12 Bit Output Format
Note that in the 12 bit output format 1 pixel is distributed over more than one byte. Also,
two successive pixel share the same byte. The pixel are directly aligned in memory. Thus 2
successive pixel are stored in 3 byte. The DMA transfer might be filled with random content for
the last bytes.

• Mono14p: 14 bit grayscale format

14 Bit Output Format
Note that in the 14 bit output format 1 pixel is distributed over more than one byte. Also,
two successive pixel share the same byte. The pixel are directly aligned in memory. Thus 12
successive pixel are stored in 21 byte. The DMA transfer might be filled with random content
for the last bytes.

• Mono16: 16 bit grayscale format

DMA Bandwidth
Keep in mind that for the 16 bit output mode, the DMA bandwidth might not be sufficient to
process the camera input data. Check Section 1.2, 'Bandwidth' for more information.

OutputFormat

imaFlex CXP-12 Quad Acq_QuadCXP12Area 97

• BayerGR8, BayerRG8, BayerGB8 and BayerBG8: 8 bit Bayer format Green-followed-by-Red, Red-
followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

• BayerGR10p, BayerRG10p, BayerGB10p and BayerBG10p: 10 bit Bayer format Green-followed-by-Red,
Red-followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

10 Bit Output Format

Note that in the 10 bit output format 1 pixel is distributed over more than one byte. Also, two
successive pixel share one byte. The pixel are directly aligned in memory. Thus 8 successive
pixel are stored in 10 byte. The DMA transfer might be filled with random content for the last
bytes.

• BayerGR12p, BayerRG12p, BayerGB12p and BayerBG12p: 12 bit Bayer format Green-followed-by-Red,
Red-followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

12 Bit Output Format

Note that in the 12 bit output format 1 pixel is distributed over more than one byte. Also,
two successive pixel share the same byte. The pixel are directly aligned in memory. Thus 2
successive pixel are stored in 3 byte. The DMA transfer might be filled with random content for
the last bytes.

• BayerGR14p, BayerRG14p, BayerGB14p and BayerBG14p: 14 bit Bayer format Green-followed-by-Red,
Red-followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

14 Bit Output Format

Note that in the 14 bit output format 1 pixel is distributed over more than one byte. Also,
two successive pixel share the same byte. The pixel are directly aligned in memory. Thus 12
successive pixel are stored in 21 byte. The DMA transfer might be filled with random content
for the last bytes.

• BayerGR16, BayerRG16, BayerGB16 and BayerBG16: 16 bit Bayer format Green-followed-by-Red, Red-
followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

DMA Bandwidth

Keep in mind that for the 16 bit output mode, the DMA bandwidth might not be sufficient to
process the camera input data. Check Section 1.2, 'Bandwidth' for more information.

• YCbCr422_8: YUV 422 output in 8 bit per component.

OutputFormat

imaFlex CXP-12 Quad Acq_QuadCXP12Area 98

Table 13.1. Parameter properties of Format

Property Value
Name Format
Display Name Output Format
Interface IEnumeration
Access policy Read/Write
Visibility Beginner
Allowed values Mono8 Mono 8

Mono10p Mono 10p
Mono12p Mono 12p
Mono14p Mono 14p
Mono16 Mono 16
BGR8 BGR 8bit
BGR10p BGR 10bit
BGR12p BGR 12bit
BGR14p BGR 14p
BGR16 BGR 16bit
RGB8 RGB 8
RGB10p RGB 10p
RGB12p RGB 12p
RGB14p RGB 14p
RGB16 RGB 16
BGRa8 BGRA 8
RGBa8 RGBA 8
BayerGR8 Bayer GR 8
BayerGR10p Bayer GR 10p
BayerGR12p Bayer GR 12p
BayerGR14p Bayer GR 14p
BayerGR16 Bayer GR 16
BayerRG8 Bayer RG 8
BayerRG10p Bayer RG 10p
BayerRG12p Bayer RG 12p
BayerRG14p Bayer RG 14p
BayerRG16 Bayer RG 16
BayerGB8 Bayer GB 8
BayerGB10p Bayer GB 10p
BayerGB12p Bayer GB 12p
BayerGB14p Bayer GB 14p
BayerGB16 Bayer GB 16
BayerBG8 Bayer BG 8
BayerBG10p Bayer BG 10p
BayerBG12p Bayer BG 12p
BayerBG14p Bayer BG 14p
BayerBG16 Bayer BG 16
YCbCr422_8 YCbCr422_8

Default value Mono8

Example 13.1. Usage of Format

/* Set */ Format = Mono8;
/* Get */ value_ = Format;

13.2. BitAlignment

OutputFormat

imaFlex CXP-12 Quad Acq_QuadCXP12Area 99

The bit alignment is used to map the pixel bits of the internal processing with a depth of 16 bit to the configured
DMA output bit depth defined by parameter Format.

You can select three different modes: Left aligned, right aligned and a custom shift mode. If you select left
aligned, the applet will map the upper bits of the internal processing bit width to the available output bits. If
you select right aligned, the applet will map the lower bits of the internal processing bit width to the available
output bits. If you want to define a custom bit shift, you'll need to set the parameter to CustomBitShift and use
parameter CustomBitShiftRight to define the bit shift.

Keep in mind that the internal processing bit width has nothing to do with the camera pixel format. Check the
camera parameter section to learn about the mapping of the camera bits to the internal bit width.

Table 13.2. Parameter properties of BitAlignment

Property Value
Name BitAlignment
Display Name Bit Alignment
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values LeftAligned Left Aligned

RightAligned Right Aligned
CustomBitShift Custom Bit Shift

Default value LeftAligned

Example 13.2. Usage of BitAlignment

/* Set */ BitAlignment = LeftAligned;
/* Get */ value_ = BitAlignment;

13.3. PixelDepth
The pixel depth read-only parameter is used to determine the number of bits used to process a pixel in the
applet. It represents the internal bit width.

Table 13.3. Parameter properties of PixelDepth

Property Value
Name PixelDepth
Display Name Pixel Depth
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 128
Stepsize 1

Unit of measure bit

Example 13.3. Usage of PixelDepth

/* Get */ value_ = PixelDepth;

13.4. CustomBitShiftRight

OutputFormat

imaFlex CXP-12 Quad Acq_QuadCXP12Area 100

This parameter can only be used if parameter BitAlignment is set to CustomBitShift. If it is enabled, you can
define a custom right bit shift value for the DMA output of the frame grabber. A shift of 0 means that the most
significant bits (MSB) of the internal processing bit width are mapped to the output MSB. For example, if the
applet has an internal processing bit width of 12 bit and you select a 10 bit output, the upper 10 bits are mapped
to the output. If you select however a bit width of two, the lower 10 bits are mapped to the output. Note that
this applet has an internal bit width of 16 bits.

Table 13.4. Parameter properties of CustomBitShiftRight

Property Value
Name CustomBitShiftRight
Display Name Bit Shift Right
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0

Maximum 15
Stepsize 1

Default value 0
Unit of measure bit

Example 13.4. Usage of CustomBitShiftRight

/* Set */ CustomBitShiftRight = 0;
/* Get */ value_ = CustomBitShiftRight;

imaFlex CXP-12 Quad Acq_QuadCXP12Area 101

Chapter 14. Revision History
Revision history of acquisition applet releases.

Applet
Version

Release Date Change Log Delivered with

1.0.1.0 22 December
2023

Initial version of this applet. The features are exactly the
same as in the applets for imaWorx CXP-12 Quad.

Framegrabber SDK
5.11.2

14.1. Known Issues
• In rare cases, the log warning “Failed to read packet. Error code: -1997” can occur with boost v cameras.

The camera communication and image acquisition are not affected. This warning can be ignored. (Ticket-
ID: 262668)

• In rare cases, loading an applet can fail with the error message “Fg_init(...) : -2050 (Design is invalid)”. In
this case, re-load the applet and contact the Basler Support [https://www.baslerweb.com/en/sales-support/
support-contact/]. (Ticket-ID: 259458)

https://www.baslerweb.com/en/sales-support/support-contact/
https://www.baslerweb.com/en/sales-support/support-contact/
https://www.baslerweb.com/en/sales-support/support-contact/

imaFlex CXP-12 Quad Acq_QuadCXP12Area 102

Glossary
Area of Interest (AOI) See Region of Interest.

Board A Basler hardware. Usually, a board is represented by a frame grabber.
Boards might comprise multiple devices.

Board ID Number An identification number of a Basler board in a PC system. The number is not
fixed to a specific hardware but has to be unique in a PC system.

Camera Index The index of a camera connected to a frame grabber. The first camera will
have index zero. Mind the difference between the camera index and the frame
grabber camera port.
See also Camera Port.

Camera Port The Basler frame grabber connectors for cameras are called camera ports.
They are numbered {0, 1, 2, ...} or enumerated {A, B, C, ... }. Depending on
the interface one camera could be connected to multiple camera ports. Also,
multiple cameras could be connected to one camera port.

Camera Tap See Tap.

Device A board can consist of multiple devices. Devices are numbered. The first
device usually has number one.

Direct Memory Access
(DMA)

A DMA transfer allows hardware subsystems within the computer to access
the system memory independently of the central processing unit (CPU).

Basler uses DMAs for data transfer such as image data between a board
e.g. a frame grabber and a PC. Data transfers can be established in multiple
directions i.e. from a frame grabber to the PC (download) and from the PC
to a frame grabber (upload). Multiple DMA channels may exist for one board.
Control and configuration data usually do not use DMA channels.

DMA Channel See DMA Index.

DMA Index The index of a DMA transfer channel.
See also Direct Memory Access.

Event In programming or runtime environments, a callback function is a piece of
executable code that is passed as an argument, which is expected to call
back (execute) exactly that time an event is triggered. These events are not
related to a special camera functionality and based on frame grabber internal
functionality.

Basler uses hardware interrupts for the event transfer and processing is
absolutely optimized for low latency. These interrupts are only produced by the
frame grabber if an event is registered and activated by software. If an event
is fired at a very high frequency this may influence the system performance.

For example these events can be used to check the reliability between a frame
trigger input and the resulting and expected camera frame.

The Basler Framegrabber SDK enables an application to get these event
notifications about certain state changes at the data flow from camera to
RAM and the image and trigger processing as well. Please consult the
Basler Framegrabber SDK documentation for more details concerning the
implementation of this functionality. Some events are enabled to produce
additional data, which is described for the event itself.

Glossary

imaFlex CXP-12 Quad Acq_QuadCXP12Area 103

Frame Grabber Usually a PC hardware using PCI express to interface the camera and grab
camera images. The frame grabber will grab, buffer, pre-process and forward
the images to the PC memory. Moreover, the frame grabber performs the
trigger signal processing to trigger the camera, external lights and controllers.
On V-series frame grabber custom processing can be implemented using
VisualApplets.
See also Direct Memory Access, Interface Card, VisualApplets.

GenICam Generic Interface for Cameras is a generic programming interface for machine
vision (industrial) cameras.

GenTL GenICam Transport Layer. This is the transport layer interface for enumerating
cameras, grabbing images from the camera, and moving them to the user
application.

Interface Card Usually a PC hardware using PCI express to interface the camera and grab
camera images. The interface card will grab, buffer and forward the images
to the PC memory. Moreover, the interface card performs the trigger signal
processing to trigger the camera, external lights and controllers.
See also Direct Memory Access, Frame Grabber.

Port See Camera Port.

Process An image or signal data processing block. A process can include one or more
cameras, one or more DMA channels and modules.

Region of Interest (ROI) Represents a part of a frame. Mostly rectangular and within the original image
boundaries. Defined by source coordinates and its dimension. The frame
grabber cuts the region of interest from the camera image. A region of interest
might reduce or increase the required bandwidth and the corresponding image
dimension.

Sensor Tap See Tap.

Software Callback See Event.

Tap Some cameras have multiple taps. This means, they can acquire or transfer
more than one pixel at a time which increses the camera's acquisition
speed. The camera sensor tap readout order varies. Some cameras read
the pixels interlaced using multiple taps, while some cameras read the pixel
simultaneously from different locations on the sensor. The reconstruction of
the frame is called sensor readout correction.

The Camera Link interface is also using multiple taps for image transfer to
increase the bandwidth. These taps are independent from the sensor taps.

Trigger In machine vision and image processing, a trigger is an event which causes an
action. This can be for example the initiation of a new line or frame acquisition,
the control of external hardware such as flash lights or actions by a software
applications. Trigger events can be initiated by external sources, an internal
frequency generator (timer) or software applications. The event itself is mostly
based on a rising or falling edge of a electrical signal.

Trigger Input A logic input of a trigger IO. The first input has index 0. Check mapping of
input pins to logic inputs in the hardware documentation.

Trigger Output A logic output of a trigger IO. The first output has index 1. Please check the
mapping of output pins to logic outputs in the hardware documentation. The
electrical characteristics and specification can be found related to the selected
or used trigger board/connector.

Trigger Reliability See Event.

Glossary

imaFlex CXP-12 Quad Acq_QuadCXP12Area 104

User Interrupt See Event.

VisualApplets Simple programming of FPGA-based image processing devices.

VisualApplets enables access to the FPGA processors in the image
processing hardware, such as frame grabbers, industrial cameras and image
processing devices, to implement individual image processing applications.

imaFlex CXP-12 Quad Acq_QuadCXP12Area 105

Index
A
AcquisitionTrigger, 73
Area of Interest, 14
AreaTriggerMode, 37

B
Bandwidth, 3
BitAlignment, 98

C
Camera, 11

Events, 11
Format, 6
Interface, 4, 11

Camera::Events, 11
CoaXPress, 6
Color Converter, 83
CorrectedErrorCount, 8
CustomBitShiftRight, 99
CXP Source Tag, 4
CxpLinkTrigger0Source, 57
CxpLinkTrigger1Source, 59
CxpLinkTrigger2Source, 61
CxpLinkTrigger3Source, 63

E
Events

Camera, 11
Digital Inputs, 22, 45
Overflow, 77
Trigger, 22
Trigger Lost Detection, 69
Trigger Output, 73
Trigger Queue, 51

F
Features, 1
FillLevel, 74
Format, 95, 95
Frame ID, 4
FrameTransferEnd, 11
FrameTransferStart, 11
FrameTriggerMissed, 72
FrontGPI, 41

G
GPI, 41, 41, 42

H
Height, 16

I
Image Select, 79
Image Selector, 79

Index

imaFlex CXP-12 Quad Acq_QuadCXP12Area 106

Image Transfer, 5
ImageSelect, 80
ImageSelectPeriod, 79

L
Line0FallingEdge, 50
Line0RisingEdge, 50
LineFront0FallingEdge, 49
LineFront0RisingEdge, 49
Lookup Table, 84, 84
Lookup Table::Applet Properties, 89
LutCustomFile, 87
LutEnable, 84
LutImplementationType, 89
LutInputPixelBitDepth, 89
LutOutputPixelBitDepth, 90
LutSaveFile, 89
LutType, 84
LutValue, 85
LutValueBlue, 86
LutValueGreen, 86
LutValueRed, 86

M
MissingCameraFrameResponse, 71
MissingCameraFrameResponseClear, 72

O
OffsetX, 16
OffsetY, 17
Output Format, 95
Overflow, 74, 74, 75, 78

Events, 77
Overflow::Events, 77
OverflowEventSelect, 76
OverflowOffThreshold, 75
OverflowOnThreshold, 76
OverflowSyncOnThreshold, 76

P
PacketTagErrorCount, 8
PC Interface, 5
Pixel Format, 6
PixelDepth, 99
PixelFormat, 6
Processing, 91
ProcessingGain, 92
ProcessingGamma, 93
ProcessingInvert, 94
ProcessingOffset, 91
Processor, 91

R
Region of Interest, 14
ROI, 14

S
ScalingFactorBlue, 81

Index

imaFlex CXP-12 Quad Acq_QuadCXP12Area 107

ScalingFactorGreen, 81
ScalingFactorRed, 81
SendSoftwareTrigger, 44
Sensor Geometry, 12, 12
SensorHeight, 13
SensorWidth, 12
SoftwareTriggerIsBusy, 45
SoftwareTriggerQueueFillLevel, 45
Source Tag, 4
Specifications, 1
SystemmonitorCxpImageLineMode, 10
SystemmonitorPacketbufferOverflowCount, 9
SystemmonitorPacketbufferOverflowSource, 10
SystemmonitorUsedCxpConnections, 7

T
Trigger, 18, 18

Activate, 38
Busy, 45
Bypass, 36
Camera Signal Mapping, 57
Debounce, 40
Debugging, 36
Digital Input, 22, 41, 42
Digital Input Output Mapping, 22
Digital Output, 22, 24, 65
Downscale Input, 43
Encoder, 24
Error Detection, 36
Events, 22
Exceeded Period Limits, 69
Exsync, 24
External, 24, 37, 40
Flash, 24, 27
Frame Rate, 23
Framerate, 39
Generator, 23, 37
GPI, 41, 42
Grabber Controlled, 23
Image Trigger, 24
Input, 40, 41, 42
Input Statistics, 45
IO Triggered, 24
Length, 24
Lost Trigger, 36, 69
Missing Frame Response, 71
Mode, 37
Multi Camera, 36
Multiply Pulses, 50
Output, 65
Output Event, 73
Output Statistics, 69
Period, 39
Pin Allocation, 22
Polarity Input, 43, 46
Pulse Form Generator, 53
Pulse Multiplication, 27
Queue, 33, 35, 51

Index

imaFlex CXP-12 Quad Acq_QuadCXP12Area 108

Sequencer, 27, 50
Signal Length, 24
Signal Width, 24
Software Controlled, 44
Software Trigger, 30, 37, 44
Start, 38
Stop, 38
Synchronized, 36, 37
Synchronized Cameras, 36
System Analysis, 36
Trigger IO, 22
Width, 24

Trigger::Camera Out Signal Mapping, 57
Trigger::Digital Output, 65
Trigger::Digital Output::Statistics, 69
Trigger::Output Event, 72
Trigger::Pulse Form Generator 0, 53
Trigger::Pulse Form Generator 1, 57
Trigger::Pulse Form Generator 2, 57
Trigger::Pulse Form Generator 3, 57
Trigger::Queue, 51
Trigger::Sequencer, 50
Trigger::Trigger Input, 40
Trigger::Trigger Input::External, 40
Trigger::Trigger Input::Software Trigger, 44
Trigger::Trigger Input::Statistics, 45
TriggerExceededPeriodLimits, 69, 72
TriggerExceededPeriodLimitsClear, 69
TriggerInDebounce, 40
TriggerInDownscale, 43
TriggerInDownscalePhase, 43
TriggerInPolarity, 43
TriggerInSource, 42
TriggerInStatisticsFrequency, 47
TriggerInStatisticsMaximumFrequency, 48
TriggerInStatisticsMinimumFrequency, 48
TriggerInStatisticsMinMaxFrequencyClear, 49
TriggerInStatisticsPolarity, 46
TriggerInStatisticsPulseCount, 47
TriggerInStatisticsPulseCountClear, 47
TriggerInStatisticsSource, 46
TriggerMultiplyPulses, 29, 50
TriggerOutputEventSelect, 73
TriggerOutputFrequency, 26, 39
TriggerOutSelectFrontGPO0, 67
TriggerOutSelectFrontGPO1, 67
TriggerOutSelectGPO0, 65
TriggerOutSelectGPO1, 65
TriggerOutSelectGPO2, 65
TriggerOutSelectGPO3, 65
TriggerOutSelectGPO4, 65
TriggerOutSelectGPO5, 65
TriggerOutSelectGPO6, 65
TriggerOutSelectGPO7, 65
TriggerOutStatisticsPulseCount, 70
TriggerOutStatisticsPulseCountClear, 70
TriggerOutStatisticsSource, 69
TriggerPulseFormGenerator0Delay, 56

Index

imaFlex CXP-12 Quad Acq_QuadCXP12Area 109

TriggerPulseFormGenerator0Downscale, 54
TriggerPulseFormGenerator0DownscalePhase, 55
TriggerPulseFormGenerator0Width, 56
TriggerPulseFormGenerator1Delay, 56
TriggerPulseFormGenerator1Downscale, 54
TriggerPulseFormGenerator1DownscalePhase, 55
TriggerPulseFormGenerator1Width, 56
TriggerPulseFormGenerator2Delay, 56
TriggerPulseFormGenerator2Downscale, 54
TriggerPulseFormGenerator2DownscalePhase, 55
TriggerPulseFormGenerator2Width, 56
TriggerPulseFormGenerator3Delay, 56
TriggerPulseFormGenerator3Downscale, 54
TriggerPulseFormGenerator3DownscalePhase, 55
TriggerPulseFormGenerator3Width, 56
TriggerQueueFillLevel, 51
TriggerQueueFillLevelEventOffThreshold, 52
TriggerQueueFillLevelEventOnThreshold, 52
TriggerQueueFilllevelThresholdOff, 53
TriggerQueueFilllevelThresholdOn, 53
TriggerQueueMode, 51
TriggerState, 38

U
UncorrectedErrorCount, 9

V
VantagePoint, 12

W
White Balance, 81, 81
Width, 15

	Acq_QuadCXP12Area for imaFlex CXP-12 Quad
	Table of Contents
	Chapter 1. Introduction
	1.1. Features of Applet Acq_QuadCXP12Area
	1.1.1. Parameterization Order

	1.2. Bandwidth
	1.3. Requirements
	1.3.1. Software Requirements
	1.3.2. Hardware Requirements
	1.3.3. License

	1.4. Camera Interface
	1.5. Frame ID
	1.6. Image Transfer to PC Memory

	Chapter 2. CoaXPress
	2.1. PixelFormat
	2.2. SystemmonitorUsedCxpConnections
	2.3. PacketTagErrorCount
	2.4. CorrectedErrorCount
	2.5. UncorrectedErrorCount
	2.6. SystemmonitorPacketbufferOverflowCount
	2.7. SystemmonitorPacketbufferOverflowSource
	2.8. SystemmonitorCxpImageLineMode

	Chapter 3. Camera
	3.1. CameraEvents
	3.1.1. FrameTransferStart
	3.1.2. FrameTransferEnd

	Chapter 4. SensorGeometry
	4.1. VantagePoint
	4.2. SensorWidth
	4.3. SensorHeight

	Chapter 5. ROI
	5.1. Width
	5.2. Height
	5.3. OffsetX
	5.4. OffsetY

	Chapter 6. Trigger
	6.1. Features and Functional Blocks of Area Trigger
	6.2. Digital Input/Output Mapping
	6.3. Event Overview
	6.4. Trigger Scenarios
	6.4.1. Internal Frequency Generator / frame grabber Controlled
	6.4.2. External Trigger Signals / IO Triggered
	6.4.3. Control of Three Flash Lights
	6.4.4. Software Trigger
	6.4.5. Software Trigger with Trigger Queue
	6.4.6. External Trigger with Trigger Queue
	6.4.7. Bypass External Trigger Signals
	6.4.8. Multi Camera Applications / Synchronized Cameras
	6.4.9. Hardware System Analysis and Error Detection / Trigger Debugging

	6.5. Parameters
	6.5.1. AreaTriggerMode
	6.5.2. TriggerState
	6.5.3. TriggerOutputFrequency
	6.5.4. Trigger Input
	6.5.4.1. External
	6.5.4.1.1. TriggerInDebounce
	6.5.4.1.2. GPI
	6.5.4.1.3. FrontGPI
	6.5.4.1.4. TriggerInSource
	6.5.4.1.5. TriggerInPolarity
	6.5.4.1.6. TriggerInDownscale
	6.5.4.1.7. TriggerInDownscalePhase

	6.5.4.2. Software Trigger
	6.5.4.2.1. SendSoftwareTrigger
	6.5.4.2.2. SoftwareTriggerIsBusy
	6.5.4.2.3. SoftwareTriggerQueueFillLevel

	6.5.4.3. InStatistics
	6.5.4.3.1. TriggerInStatisticsSource
	6.5.4.3.2. TriggerInStatisticsPolarity
	6.5.4.3.3. TriggerInStatisticsPulseCount
	6.5.4.3.4. TriggerInStatisticsPulseCountClear
	6.5.4.3.5. TriggerInStatisticsFrequency
	6.5.4.3.6. TriggerInStatisticsMinimumFrequency
	6.5.4.3.7. TriggerInStatisticsMaximumFrequency
	6.5.4.3.8. TriggerInStatisticsMinMaxFrequencyClear
	6.5.4.3.9. LineFront0RisingEdge
	6.5.4.3.10. LineFront0FallingEdge
	6.5.4.3.11. Line0RisingEdge
	6.5.4.3.12. Line0FallingEdge

	6.5.5. Sequencer
	6.5.5.1. TriggerMultiplyPulses

	6.5.6. Queue
	6.5.6.1. TriggerQueueMode
	6.5.6.2. TriggerQueueFillLevel
	6.5.6.3. TriggerQueueFillLevelEventOnThreshold
	6.5.6.4. TriggerQueueFillLevelEventOffThreshold
	6.5.6.5. TriggerQueueFilllevelThresholdOn
	6.5.6.6. TriggerQueueFilllevelThresholdOff

	6.5.7. Pulse Form Generator 0
	6.5.7.1. TriggerPulseFormGenerator0Downscale et al.
	6.5.7.2. TriggerPulseFormGenerator0DownscalePhase et al.
	6.5.7.3. TriggerPulseFormGenerator0Delay et al.
	6.5.7.4. TriggerPulseFormGenerator0Width et al.

	6.5.8. Pulse Form Generator 1
	6.5.9. Pulse Form Generator 2
	6.5.10. Pulse Form Generator 3
	6.5.11. CameraOutSignalMapping
	6.5.11.1. CxpLinkTrigger0Source
	6.5.11.2. CxpLinkTrigger1Source
	6.5.11.3. CxpLinkTrigger2Source
	6.5.11.4. CxpLinkTrigger3Source

	6.5.12. DigitalOutput
	6.5.12.1. TriggerOutSelectGPO0 et al.
	6.5.12.2. TriggerOutSelectFrontGPO0 et al.
	6.5.12.3. OutStatistics
	6.5.12.3.1. TriggerExceededPeriodLimits
	6.5.12.3.2. TriggerExceededPeriodLimitsClear
	6.5.12.3.3. TriggerOutStatisticsSource
	6.5.12.3.4. TriggerOutStatisticsPulseCount
	6.5.12.3.5. TriggerOutStatisticsPulseCountClear
	6.5.12.3.6. MissingCameraFrameResponse
	6.5.12.3.6.1.

	6.5.12.3.7. MissingCameraFrameResponseClear
	6.5.12.3.8. TriggerExceededPeriodLimits
	6.5.12.3.9. FrameTriggerMissed

	6.5.13. OutputEvents
	6.5.13.1. TriggerOutputEventSelect
	6.5.13.2. AcquisitionTrigger

	Chapter 7. BufferStatus
	7.1. FillLevel
	7.2. Overflow
	7.3. OverflowOffThreshold
	7.4. OverflowOnThreshold
	7.5. OverflowSyncOnThreshold
	7.6. OverflowEventSelect
	7.7. OverflowEvents
	7.7.1. Overflow

	Chapter 8. ImageSelector
	8.1. ImageSelectPeriod
	8.2. ImageSelect

	Chapter 9. WhiteBalance
	9.1. ScalingFactorGreen
	9.2. ScalingFactorRed
	9.3. ScalingFactorBlue

	Chapter 10. ColorConverter
	Chapter 11. LookupTable
	11.1. LutEnable
	11.2. LutType
	11.3. LutValue
	11.4. LutValueRed
	11.5. LutValueGreen
	11.6. LutValueBlue
	11.7. LutCustomFile
	11.8. LutSaveFile
	11.9. AppletProperties
	11.9.1. LutImplementationType
	11.9.2. LutInputPixelBitDepth
	11.9.3. LutOutputPixelBitDepth

	Chapter 12. Processing
	12.1. ProcessingOffset
	12.2. ProcessingGain
	12.3. ProcessingGamma
	12.4. ProcessingInvert

	Chapter 13. OutputFormat
	13.1. Format
	13.2. BitAlignment
	13.3. PixelDepth
	13.4. CustomBitShiftRight

	Chapter 14. Revision History
	14.1. Known Issues

	Glossary
	Index

