BASLER’

the power of

Visual Applets 3

Creating Custom Operators and

Custom Libraries

Concept Description and User Guide

BASLER’

Imprint

Basler AG

Konrad-Zuse-Ring 28

68163 Mannheim, Germany
Tel.: +49 (0) 621 789507 0
Fax: +49 (0) 621 789507 10

© 2021 Basler AG. All rights reserved.
Document Version: 2.1
Document Language: en (US)

Last Change: June 2021

Visual Applets 3 2 Custom Operatos User’s Guide

BASLER’

Contents

1 INEFOAUCTION oo 6
L1 WOTKFIOW ottt st e st e st e s b e sane e e eanee s 6
1.2 VisualApplets Custom Operator FUNCLIONAIILY ...ccvvveeeeeeiiiiiiiieeeee et 8

i S B O T o 1= =1 o] gl IV o 1= T T T T USRS 8
1.4 Synchronous and Asynchronous Operator POrtScccceveccciiieriee e 9

2 INTerfac@ ArChITECTUNEooieiiiieee e s 10
2.1 ClOCK INTEITACE .. .cii ittt st e 11
2.2 Resetand ENable ... 12

D T (T4) AT ol [a1 =T o - Tol ISR 14
2.4 Interfaces for IMage Data......cccuveeeiiiiiiiiciieeee et e e e e e e ree e e e e e e e e e nnarneees 15
2.4.1 IMAGE PrOtOCOIS ..eiiiiiiieeet ettt e st e e s e e e e e s anees 15
2.4.2 IMaABE INPUEL POIES ..t e e e e et e e e e e e s e e et a e e e eeeeeeeestannaeeaaeaens 17
2.4.3 ImMage OULPUL POIES ..o 18

2.5 GENEral PUIPOSE 1O ettt et ettt e et e e aae e e e aae e e etae e saeeesbaeesateeeearaeens 19

D N \Y/ =10 s Vo] AV [0} <] n = ol TR 20

3 Defining an Individual Custom Operator via GUIcccuviiiieeeiii e 21
3.1 Creating a New CUSTOM LiDrary ...ttt e e e ar e e e e e e e e eeanns 21
3.2 Creating a NeW CUSTOM OPEIatoruuuuuiuieiiiereiererrrererererererererererrer————————————————. 24
3.3 Defining Basic Information about Custom OPerator........ccccveieevieeiireeeeeeeeeeiicirreeeeeeeeeeennns 27
3.4 Defining the IMage INPUL POItS ...c..vviiiiiiiieecteee ettt s aaee s 28
3.5 DefiNiNG the GPIO POITS...uuiiiiiiiiciiiiiiie ettt e e e e e s sabbare e e e e e e eesesassseneeeeeessennes 35
3.6 Defining the IMage OULPUL POItScoiiiiiiiiiiiiie ettt s aeee s 36
3.7 Defining the MemoOry POItS ... ettt e e et e e e e e e e e enerree e e e e e e e eennnes 42
3.8 Defining the Registers of the Custom OpPerator.........ccccvveeeeeiieeicciiiieeeee e, 43

4 Generation of VHDL Black Box and Test BENChcoiiiiiiiiiiiiiiiiicciecceceeee e 45
SN 0011 =) o ol [} =T o = ol o 4R 47
5.1 Clock System, Reset and ENabIe.......oooei it e e 47

Visual Applets 3 3 Custom Operatos User’s Guide

BASLER’

5.2 Parameter INterface ... e 47
5.3 Image Communication INTEITACES ...ueviiiieiiecirieeeee et e e e e e e 48
5.3.1 Interfaces of TYPE IMEIN oo e e e e e e arare e e e e e e 48
5.3.2 Interfaces of TYPE IMBOUL.....c.ccuiiiiiieic ettt e e e e e e e rrrr e e e e e e e e 50

R V[T o o T VA o (=] o = Vol T PR 52
5.5 GEeNeral PUrPOSE I/O PINS ..coourieeieiiieeeeecieee ettt eeteee e et e e eetre e e eeeabeeeeeeaaraeeeeessreeesenreeeens 54

6 VHDLSIimulation and VerifiCationoceiiiiiiiiiiiiiicieceeee e 55
6.1 SiMUIQtioN FramEWOTKccoueiiiiiiiieieee et 55
6.2 Emulation of Register INTerface......ccuvuiiiiiiiiiie et 56
6.3 Emulation of IMgIN INTerface.....uueeiie i 58
6.4 Emulation of IMGOUL INtEITACE.....ciiiiiii e e e e e aeees 59
6.5 Emulation of Memory CommuNiCatioNn.........cceeeiieeiiiiiiieee e e 60
6.6 GPIO EMUIGTION ..ottt s 60

7 Defining the Custom Operator’s Software Interfaceccoveeeiiieeccieee e, 62
7.1 High-level SIMUIAtioN......ueeii e e e e e e e e e e e e e tarreeeeeeeeeeennnns 62

T 1L OVEIVIEW ceeeiiiiiiiiiiiiiiiettt ettt e e e s s b a e e e e e s s s s b b e e e e e e e s s s b raneeeeeseeas 62
7.1.2 CommuUNICAtiNG Data..cuuuue e e e e e e e et e e e e e e e e e et aeaaaaens 66
7.1.3 Detailed Description of Interface FUNCLIONSccooviiiiiiiiiiiiiiiiee e 68

7.2 ThroUBhPUL ANAIYSIS...uuiiiiiieii ettt e e et e e e e e e e e st r e e e e e e e eesntbareeeeaeeeesnnssseneaeaeessnnnnes 83

8 Creating Custom Operator DOCUMENTAtIONuuceii i e 84
9 Completing the CUSTOM OPEIAtOr ...ccuvvvieiiee ettt e e e st e e e e e e sesebbrrereeeeeeesennnes 85
ProteCting OPtiONS ... e 88

10 USING NEW CUSTOM OPEIATOIS c.vuuuieiieeeeeeiiiieie e e e e eeeeetcie e e e e e e e ettt e e e e eeeseetsanaaaeeeeeseesssnnnnaaeaesenes 89
10.1 Distributing the Custom Library or the Individual Custom Operator........cccceevveeeirciveeennns 89
10.2 Update from CUStOM LIDrary ...ttt et e e e e e e arees 90
10.3 Importing and Exporting Individual Custom Operatorscccovvveeeeeeeeeiccinreeeeee e e, 91
11 Operator Template and EXamPIES ..cccooeeeeiiiiiiiiee ettt e e e et e e e e e s e e nnaraeeeeaeeas 93
O R - 1 4 Y] L= TR 93

Visual Applets 3 4 Custom Operatos User’s Guide

BASLER’

11.2 Custom Operator TEMPIATE. ... e e e e e e e e e e e e e e e e e aneranees 93
i Yoo 1T o [PSPPSRI 95
12.1 XML Format for Custom Operator SPeCifiCationcceevieeieiicciiieeeeee e, 95
CONTACE DETAIIS ...ttt et e e ab e et e e s bt e e s bt e e s bt e e sre e e nans 104
DT ol =110 =T OO PR PSPPSR 104

Visual Applets 3 5 Custom Operatos User’s Guide

BASLER’

1 Introduction

With the VisualApplets 3 extension Expert, you have the possibility to convert image processing

modules you have designed in VHDL into VisualApplets operators.

You incorporate your modules as IP cores into VisualApplets. Each IP core builds one operator.
After implementation, these operators work like built-in VisualApplets operators. Operators

implemented in such a way are called Custom Operators.

Help B X

| »

Operator InsertWords32

The module InsertWords32 is able to insert words to an input image entering the operator at link 1. Inserting words is ‘
done depending on the control port InsertW. The value of the inserted words is determined by the input link W. All input
links must be synchronous to each other. Two parameters control the way words are inserted. The parameter
InsertMode selects whether words are inserted after (0) or before (1) the word at link I. The parameter InsertNumber
allows configuring the number of words which shall be inserted each time when InsertW is high.

I/0 Properties

Property Value
Operator Type (M -
ProjectInfo | ModuleInfo | DRClog | Buldlog | Hep |

Custom Library g X
Filter: 2
Mame Version
4 | CustomlLibrary
3. DirectMemoryhcc... 1.0
& InsertWords32 1.0
" OperatorTemplate 1.0
~ Switch 1.0

| Operator Library | User Library | Custom Library |

To make your custom operators available on the VisualApplets GUI, you also need to define one or
more custom libraries that contain the custom operator(s.) Each custom operator needs to be part

of one specific custom library.

1.1 Workflow

You add a new Custom Operator to VisualApplets in just a few steps. You can complete the whole

work flow by your own:

1. Specify the custom operator’s main properties and its interface directly on the VA GUI
(operator name, operator version, number and properties of required image in, image
out, memory ports, etc.).

2. Based onyour input of step 1, let VisualApplets generate the VHDL code for the operator
interface (black box) and a VHDL test bench for testing your implementation.

Visual Applets 3 6 Custom Operatos User’s Guide

BASLER’

3. Worap your HDL code so that its interface matches the generated black box. For testing
your implementation the automatically generated test bench may help.

4. Create a net list of your implementation. Also create a constraints file if required.

5. Optionally, create the operator documentation (for the operator help window) and a
simulation model (that later allows to simulate a VA design containing the custom
operator).

6. Edit the custom operator in VA again: Add the generated netlist and optionally also the
help files and simulation model.

After these steps, your image processing module is available as custom operator directly in
VisualApplets and can be used the same way as any other operator. The custom libraries are saved
* vl files (similar to the user libraries). They can be deployed and distributed in this format.

[Operak:r Deﬁniion] VisualApplets
i . End UserInterface
VA Simuiztion
Operator I .
containing Custom Libra
and Docu ﬁ i Description g v
*nge e ——
— VA Custom
Cperator > =
Functionality = = 1 o
Operstor | BockBox+ ks s T = R
Metiists + Test Bench = T
Constraints _
[‘JHI]LCodlng e B

peator InsertWerds 12

Tog maduly Iraartwnadn 1] @ B8 10 P S | :Mwumummm--yswl rareg s & 1
dura gaguradng £e toa (o poe Faed Tea s of S rard moedy o detereerad by o ongas bk m al e
[Slmulaion] e i T i oy et et et 1| S] T et P
T
* e
g e =
Pty | Mmhiniehy | B | R s
% Synthesis] e —
e B B3
— w—
% . Comy
L T e Ey 7]
LI T 15
s 1
—
Toaranr Lbeary | Lmar |l L e Ll
:] Dezign Flow Step @ File penerated by Visusldppists’
Custom Operator Funciionaliy

[] T

ﬁ File provided by user

Figure 1: Custom Operators design flow.

Visual Applets 3 7 Custom Operatos User’s Guide

BASLER’

1.2 VisualApplets Custom Operator Functionality

VisualApplets (i.e., the VisualApplets Custom Operator Functionality) is used two times during this

work flow:

1. For the generation of an operator prototype in VisualApplets allowing to export HDL code
for defining the concerning IP core interface (black box and test bench).

2. For completing the operator by adding the necessary files for synthesis and (optionally)
simulation and help content.

Generation of Operator Prototype: The VA Custom Operator Functionality lets you create an
operator prototype which can immediately be used for instantiating the operator in Visual
Applets. For this operator prototype a black box interface and an RTL level simulation entity for
emulating the communication ports of the generated operator interface can be exported. Then
you can start coding (i.e., implementing your HDL code complying with the interface of the black
box) and simulating your Custom Operator design. The resulting FPGA design you then synthesize
to an EDIF or NGC netlist. Optionally, you add a constraints file, create a dynamic link library for

VisualApplets high-level simulation, and write HTML documentation for the VisualApplets GUI.

Completing the operator definition: The VA Custom Operator Functionality lets you specify the
netlist, simulation library and documentation files . Supplemented with these files the operator is
ready for use immediately.

1.3 Operator Types

VisualApplets knows different types of operators and ports, depending on the underlying flow

control mechanism. Operators may be of type O or type M.

Custom Operators are always of type M.

Custom Operator Type: M
@ Custom Operators are always of type M.

Visual Applets 3 8 Custom Operatos User’s Guide

BASLER’

1.4 Synchronous and Asynchronous Operator Ports

Operator ports can be synchronous or asynchronous. Being synchronous in VisualApplets basically
means that data of several ports is transferred synchronously, whereas ports which are

asynchronous to each other support non-aligned communication patterns.

Ports are only synchronous if they have a common M-source, or if they are sourced from a SYNC

module; any constellation of O-operators may be between that source and the ports.

Depending on the relation of the operator input ports to each other, we differentiate between the

following options:

1. Synchronous inputs: All input ports are synchronous to each other. There is one output
port.

2. Asynchronous inputs: Some of the input ports are asynchronous to each other and all
outputs are synchronous to each other.

Operators with asynchronous outputs are not allowed. Operators with synchronous inputs may
only have a single output. If more than one output is required, the inputs must be declared as

being asynchronous.

Defining Multiple Outputs

If you want to create an operator with multiple outputs, you need to declare its inputs to be

asynchronous. Multiple outputs are always synchronous.

Examples for both classes (built-in Visual-Applets operators):

M-Operator with synchronous inputs
@ Removelmage
— and one output

M-Operator with asynchronous
| SYNC inputs and multiple, synchronous

outputs

Visual Applets 3 9 Custom Operatos User’s Guide

BASLER’

2 Interface Architecture

VisualApplets Custom Operator interfaces are designed for smoothly integrating your new
operators so they behave inside VisualApplets like built-in operators. You can define any number

of input and output ports for your custom operators.

Image In / Image Out: The Image In and Image Out ports may support multiple image formats.
They are driven by simple-to-use FIFO interfaces. The FIFOs reside in the VA part of the custom

operator, so that you only need to implement a flow control, but not the FIFO.

Memory ports: You also can define any number of memory ports. They also use FIFOs residing in

the VA part of the custom operator.

GPIO ports: In addition to the image ports, you can define general-purpose I/O ports, e.g., for

communicating asynchronous signals to the operator.

Registers: To allow the final user of your operator to configure the operator and to get access to

status information, you can define any number of write and read registers.
Clock: The ports for receiving clock pulses are set up automatically for every custom operator.

Reset/Enable port: The ports for receiving reset or enable commands are set up automatically for

every custom operator.

Visual Applets 3 10 Custom Operatos User’s Guide

BASLER’

RAM Interfaces

= Controller Controller
Visual fﬁ fﬁ
Applets
MemWr /Rd MemWr /Rd
Input Links Output Links
=
] g "
o . .
E g g 8 g &
A = o B » H
g 3 . 8 E g
U @ I I 5 e
Custom
= & Operator = =
P - Hal]
£ g 2 g G
] = 8 > (=] =
)] o 1]
(] [T (U]
a E A g
I = = I = 3l
General (General
Purpose —a Purpose
Input Clock Output
Reset
Enable
‘ Register Interface ‘

]

Fifo IF
Figure 2: Custom Operator interfaces.

The following sections describe the different types of interfaces shown in figure 2 in detail.

2.1 Clock Interface

VisualApplets connects two clock inputs — the design clock and a second clock synchronous to the
design clock but with double frequency. All interfaces except the memory interface must be
synchronous to the design clock. The memory interface may be configured using the design clock

or the double frequency clock for the read and/or write interface.

Visual Applets 3 11 Custom Operatos User’s Guide

BASLER’

RAM Interfaces

S | o]

A

Visual & &=

A

Applets —_— —_

MemWr/Rd MemWr/Rd
Input Links ELﬁ Output Links
=2 =

l Custom
Operator

v
Glue LogicD Glue Logicn
A,
‘Vh SlgnalH} ‘ VA Link

| VA Link
Glue Logic
ImgIn

)

GPIn

Glue Logic

‘VA Signal

General
Purpose
Output

General

Purpose Re H
gIn RegOut

Input

4444{ GPOut Hrggg{ ImgOut

Clock
Reset
Enable

‘ Register Interface ‘

2.2 Reset and Enable

The Reset and Enable inputs are driven by the according “process enable” and “process reset”
signals of the VA-process where the operator is instantiated. Make sure you implement the

following behavior as reaction to these signals into your operator:

= Assertion of Reset puts the operator in its init state.
= Assertion of Enable starts processing.

= Deactivating Enable stops processing.
= (When Enable=0, the output FIFOs of the operator are not read. Depending on the state of the

image processing pipeline some data may still be written to the input ports but the flow
control safely prevents that any FIFO content gets corrupted.)
= Reset is only asserted when Enable=0

The following behavior to these signals is implemented in the VA part of the custom operator:

= Reset will empty all port interface FIFOs.
= Reset and Enable have no effect on the parameters of the operator.
= Reset and Enable have no effect on the GPIO interface of the operator.

Visual Applets 3 12 Custom Operatos User’s Guide

BASLER’

RAM Interfaces

‘ SRAM ‘ DRAM
Visual @iiiﬂ §§E§ﬂ

A

Applets — —

MemWr /Rd MemWr /Rd
Input Links Output Links
=" =
g g
'Aé o o L o Aé
= o H = Q Il
| = o e » = |
o g o
g 2 . a 3 g
U] - i |l 5 |l
Custom
=n S Operator = =
] a E‘!\ O
B o o 5 o E
- =] H o) » A -
©n [+ m 7]
Q (L) [T} Q
< 3 3 §
U = o , | o |
General General
Purpose Re m W Purpose
gln RegOut
Input Clock Output
Reset
Enable

‘ Register Interface ‘

Visual Applets 3 13 Custom Operatos User’s Guide

BASLER’

2.3 Register Interface

For communicating operator parameters and status, the Custom Operator may be supplied with
an arbitrary number of VisualApplets parameters. Each of the parameters translates to a separate

register port of the Custom Operator. VisualApplets cares for dispatching the accesses to and from
the operator registers.

RAM Interfaces

SRAM DRAM
A A
= Controller Controller

Visual fﬁ fﬁ

Applets
MemWr/Rd MemWr/Rd

Input Links Output Links
— 5 /%3\ il

A L Bl o

5 3 S 5 8 &

| g 2 > |
U] o U] | o I

Custom

= - Operator o) =l

g = = g

o Q (=] ‘:‘,’ Q o

- =] g o) » = » A

“a o (T} & @ @
i & U] | & |
General General
Purpose Re Purpose

gOut
Reset
v Enable
‘ Register Interface ‘ []

Visual Applets 3 14 Custom Operatos User’s Guide

BASLER’

2.4 Interfaces for Image Data

RAM Interfaces

| sram Lu | DRaM Lu
A A
= Controller Controller
Visual éﬁ fﬁ
Applets . .
MemWr /Rd UJ—{ MemWr/Rd
Input Links Output Links
=2 =]
B] "
o .
& g & 5 g C
A = 2 e » = > A
g 5 = & 8 g
—~ ~
4 © 1 i © [
Custom
= S Operator S ==
o 7 7 o
& o & 5 o &
] =] m fe) » A » o
) a & S) @
g 3 2 <
=] T | i © Bl
General T General
Purpose RegIn m RegOutm . Purpose
Input = o Clock Output
Reset
A Enable
‘ Register Interface ‘ [j

2.4.1 Image Protocols

You can define the image protocols that will be supported by the image in and image out ports of
your custom operator. The future user of your operator will then be able to select from the list of

image protocols you provide.

VisualApplets offers the following image formats to be supported by your operator’s Imgln and

ImgOut ports:

= grayXxP: gray image with X bits per pixel and parallelism P

= rghbYxP: color image with Y/3 bits per color component (red, green, blue) and
parallelism P

= hsiYxP: color image with Y/3 bits per color component (HSI color model) and
parallelism P

= hslYxP: color image with Y/3 bits per color component (HSL color model) and

parallelism P

= hsvYxP: color image with Y/3 bits per color component (HSV color model) and

parallelism P

Visual Applets 3 15 Custom Operatos User’s Guide

BASLER’

= yuvYxP: color image with Y/3 bits per color component (YUV color model) and
parallelism P

= ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and
parallelism P

= labYxP: color image with Y/3 bits per color component (LAB color model) and
parallelism P

= xyzYxP: color image with Y/3 bits per color component (XYZ color model) and

parallelism P

Additionally, the image dimension and the information whether pixel components are signed or

unsigned can be coded by optional suffixes.

The pixel data width X is limited to 64 bit. The width Y must be a multiple of 3 and is limited to 63
bit. The parallelism P defines the number of pixels which are contained in a single data word at the
interface port. It must be chosen from following set of allowed values: P=1{1, 2, 4, 8, 16, 32, 64}.

Packing of image data into words of a given interface width N must follow certain rules:

= The data of all P pixels must fit in a single word of length N. The data is stored LSB
aligned which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is
distributed as follows: Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

= For RGB images the three color components are packed LSB aligned into a sub
word[0..Y-1] in the following order: red uses the bits [0..Y/3-1], green the bits
[Y/3..2*Y/3-1] and blue the bits [2*Y/3..3*Y/3-1].

= For YUV color images the same rules than for RGB applies where Y takes the role
ofred, U that of green and V the role of blue.

= For HSI color images the same rules than for RGB applies where H takes the role
ofred, S that of green and | the role of blue.

= For LAB color images the same rules than for RGB applies where L takes the role
ofred, A that of green and B the role of blue.

= For XYZ color images the same rules than for RGB applies where X takes the role

ofred, Y that of green and Z the role of blue.

In VisualApplets, any link carries the properties maximum image width and maximum image
height. VisualApplets lets you define optional constraints for the maximum width and height for

any of the supported image protocols of the custom operator separately.

Visual Applets 3 16 Custom Operatos User’s Guide

BASLER’

For an image interface port, you define a list of allowed image protocols. This list makes up a
subset of the possible VisualApplets image formats (see above). A format can be described by the

following properties:

= Datatype uintorint

= Pixel data bit width N = [1..64]

= Gray or color format (single or three data components with aggregated width N)
= Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

= 2D, 1D, or 0D

= Parallelism P ={1,2,4,8,16,32,64}

Implicitly it is assumed that the kernel size is 1x1. The listed formats are numbered starting from

zero and therewith define an ID.

When working with the final operator in VisualApplets, the user of your operator can select any of
the formats you list here for the image communication port in question. According to the selection
made by the VA user, the corresponding ID will be output to the related Custom Operator port.

This enables the Custom Operator to adapt its behavior to the selected format.

2.4.2 Image Input Ports

Image input ports allow to communicate image data from the VisualApplets process to the custom
operator. These ports are named Imgin. If you designed the custom operator to support
configuration of its input channel(s) (see section 2.4.1), several different protocols can be driven
through a single port selected by the corresponding format parameter within VisualApplets. The
interface basically consists of a FIFO and a parameter register providing an ID for the actually used
data format. The Custom Operator must care for reading the FIFO and interpreting the image data
according to the protocol of the selected image format. The operator must guarantee a correct
flow control according to the status pins providing information about the filling state of the FIFO,

i.e., no data may be read when the FIFO is empty.

For an image interface port, a list of allowed image formats needs to be defined. This list makes up
a subset of possible VisualApplets image formats (see section 2.4.1) where a format can be

described by the following properties:

= Data type uintorint
= Pixel data bit width N = [1..64]
= Gray or color format (single or three data components with aggregated width N)
= Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)
Visual Applets 3 17 Custom Operatos User’s Guide

BASLER’

= 2D, 1D, or0OD
= Parallelism P ={1,2,4,8,16,32,64}

Implicitly it is assumed that the kernel size is 1x1. The listed formats are numbered starting from

zero and therewith define an ID.

When working with the final operator in VisualApplets, the user can select any of the formats you
list here for the concerning image communication port. According to the selection made by the VA
user, the corresponding ID will be output to the related Custom Operator port. This enables the

Custom Operator to adapt its behavior to the selected format.

2.4.3 Image Output Ports

Image output ports allow communicating image data from the Custom Operator to the
VisualApplets process. These ports are named ImgOut. If you designed the custom operator to
support appropriate configuration of its output channel(s) (see section 2.4.1), several different
protocols can be driven through a single port selected by the corresponding format parameter
within VisualApplets. The interface basically consists of a FIFO and a parameter register providing
an ID for the actually used data format. The Custom Operator must care for feeding the FIFO with
image data according to the protocol of the selected image format. The operator must guarantee
a correct flow control according to the status pins providing information about the filling state of

the FIFQ, i.e., no data may be written when the FIFO is full.

For an image interface port, a list of allowed image formats needs to be defined. This list makes up
a subset of possible VisualApplets image formats (see section 2.4.1) where a format can be

described by the following properties:

= Data type uint orint

= Pixel data bit width N = [1..64]

= Gray or color format (single or three data components with aggregated width N)
= Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

= 2D, 1D, orOD

= Parallelism P ={1,2,4,8,16,32,64}

Implicitly it is assumed that the kernel size is 1x1. The listed formats are numbered starting from

zero and therewith define an ID.

Visual Applets 3 18 Custom Operatos User’s Guide

BASLER’

When working with the final operator in VisualApplets, the user can select any of the formats you
list here for the concerning image communication port. According to the selection made by the VA
user, the corresponding ID will be output to the related custom operator port. This enables the

custom operator to adapt its behavior to the selected format.

2.5 General purpose I/O

The General Purpose I/0 interface allows connecting dedicated signal pins of the custom operator.
Every GPIO port maps to a pin of the custom operator which is either an input or an output.
Bidirectional pins are not supported. In VisualApplets, the corresponding operator ports are of

type SIGNAL.

RAM Interfaces

SRAM DRAM

A 4

Visual e

A A
Applets
MemWr /Rd MemWr /Rd
Input Links Output Links
— =
: ; :
- .
G g g 3 & &
A » -) e > H A
s 2 . 5 2 s
4 [T] ! i [T] L
Custom
= @ Operator S =]
« - T «
e o P o <]
o Q] =1 (] o
] =] E o > =]]
7 - 5 5 0] @
o 2 3 g
i o e - g Rdll
General (General
Purpose Re Purpose
gOut
Input m !I ‘ Output
Clock
Reset
Enable
Register Interface

Bidirectional Pins not Supported

The GPIO pins must be either an input or an output. Bidirectional pins are not supported.

Visual Applets 3 19 Custom Operatos User’s Guide

BASLER’

2.6 Memory Interface

A custom operator may be set up for accessing one or more banks of memory. The concerning
memory ports have a FIFO like interface for write and read commands. The FIFOs reside in the VA
part of the custom operator, so that you only need to implement a flow control, but not the FIFO.
The timing of forwarding the FIFO content to the memory controller attached to the custom

operator is fully controlled by VisualApplets.

RAM Interfaces
y SRAM y DRAM
A A

Vi S ual @?ller D @Eoller D

A

Applets _— _—

MemWr /R4 MemWr /Rd

Input Links Output Links
= S T =

~ >)) =

5 Q b 5 Q 5

- N =] g\ % | A]

Q flar] =] Q

g E A 2 g

U] - U] I & Il

l Custom L
Operator =

GPIn

GPOut
v
Glue Logic
‘ VA Signal

General General

Purpose RegIn m Re W Purpose
gOut

: ‘ 1 Output

‘ VA S:Lgnalm
Glue‘;ogicD

Input — — Clock
Reset
Enable
‘ Register Interface ‘ []

Visual Applets 3 20 Custom Operatos User’s Guide

BASLER’

3 Defining an Individual Custom Operator via GUI

First of all, you need to enter some details describing your new custom operator.

VisualApplets uses these details for generating a VHDL black box for your custom operator and an

according test bench for simulation.

You enter the configuration for your individual custom operator via the VisualApplets GUI.
VisualApplets makes the specified operator available for use in a design immediately, even if the

operator specification is incomplete concerning netlist, simulation model and documentation.

Custom Library File

A custom library with all contained operators is stored as one single <LibaryName>.vl file.
<LibaryName> is the name of the custom library.
This file can be distributed and directly applied in VisualApplets. It simply needs to be copied

into the Custom Library directory which is specified in the VisualApplets settings.

Operator Configuration in XML Format

VisualApplets stores the custom operator specification in XML format. You can export the XML
content from the custom library to a file, e.g., for handling it in a version control system. On
the other hand you can import the XML for adding a custom operator (see section 10.3). You
do not need to know how this XML file looks like. However, if you want to have a look, refer to

the Appendix, section 12.1.

3.1 Creating a New Custom Library

Before you can start to define a new custom operator, you need to create a custom library where

the new operator belongs to.

If you already have a custom library available where the new custom operator will belong to, skip

this section and proceed with section 3.2.

Visual Applets 3 21 Custom Operatos User’s Guide

BASLER’

To create a new custom library:

1. Inmenu Library, select menu item Create New Custom Library.

VisualApplets 3.01 - Silicon Software GmbH
Eile Edit Design | Library | Analysis Build Jools View Window

|)ll i Create New User Library

%4 Create New Custom Library
Edit User Library »
Edit Custom Library

Change to Hierarchical Box

Save to User Library...

¥ Update from User Library
;"57 Quick Update from User Library
Rescan User Library Directory

Update from Custom Library
._-.; Quick Update from Custom Library

Rescan Custorn Library Directory

2. Inthe dialog that opens, enter a name for your new library and confirm with OK:

P

“& Create New Custom Library @

MName of library

MyCustomLibrary

Help] [Ok | l Cancel

Comply with Conventions for Valid C Identifiers

When defining the library name in the VA GUI, make sure you conform to the conventions for

valid C identifiers.

Now, the new custom library is created. You can see it in the operator panel under the

Custom Library tab:

Visual Applets 3 22 Custom Operatos User’s Guide

BASLER’

VisualApplets 3.0.1 - Silicon Software GmbH
Edit

1 &

File Design Library Analysis Build Tools View Window Settings Help

1 3 u A P o I e T > -

Project Info

(] E
(o] ¥ >

Info

4 Project
Mame
Creation Date
Last Modified
Version

G

Description
Hardware Platform
FPGA Device
Target Runtime

Value

4| 1}

L2

ORC.. | Buid.. | Help |

Praject ... | Module ...

Custom Library
Filter:

5 X

free =] 2,

Mame

My CustomLibrary

Version

Operator Library

User Library

Custom Library :

Specifying a Custom Library Directory

For creating a new custom library, you may need to specify a directory where all custom-library-related

files are stored. You do this under Settings -> System Settings

Settings | Help
Systern Settings
[s# Build Settings

[5] System Settings

Category

: Path Settings
’L'lﬂ?' Paths

Program Configuration File

-> Paths:

Path for temparary files

= Sirmulation

E |C: \Wsers\sSchoch\AppData'Local\Basler \WisualApplets\3. 3. 0\Visual Applets.ini
=0 Desi
‘el —oogn Temporary Files

E Diagram

|C: \Uszers\AppData'iLocal\Temp

[] Use system's temporary directory

Libraries

Path for storage of user libraries

|C: \Basler \VisualApplets\3. 3.0\UserLibrary

Path for storage of custom libraries

|C: \Basler \VisualApplets\3. 3.0\CustomLibrary

Script Collection
Path for storage of script collection

|C: \Basler \Wisualapplets'3. 3.0\scriptCollection

Visual Applets 3

23

Custom Operatos User’s Guide

BASLER’

3.2 Creating a New Custom Operator
To define a new custom operator:
1. Inmenu Library, select menu item Edit Custom Library.

2. Inthe submenu that opens, select New Custom Library Element.

VisualApplets 2.0.1 - Silicon Software GmbH
File Edit Design [Library | Analysis Build Tools View Window Settings Help

= | P! 0 Crecie Wew User Library
! %4 Create New Custom Library
Edit User Library k

Edit Custom Library L3 [

Mew Custom Library Element

Edit Custom Library Element

Change to Hierarchical Box

Save to User Library...

Update from User Library

Quick Update from User Library

Rescan User Library Directory

Update from Custom Library

ol
;L
(i
Py
[+
»
i

Quick Update from Custom Library

Rescan Custom Library Directory

In the window that opens:

3. Select a custom library via double-click on the library name.

P

B‘ Mew Custom Library Element ... @

. MyCustomLibrary
. MySecondCustomLibrary
. YetAnotherCustomLibrary

Please choose a custom library.

Operator Type Name: ||

Mew Custom Library Create

Visual Applets 3 24 Custom Operatos User’s Guide

BASLER’

4. Enter a name for your custom operator:

{% New Custom Library Element ... @

[9 . MySecondCustomLibrary]

Operator Type Name: MyFirstOperator

MNew Custom Library Create 1 Cancel

Comply with VHDL Naming Conventions

When defining the operator name in the VA GUI, make sure you conform to the VHDL naming
conventions.

VHDL valid names are defined as follows:

“A valid name for a port, signal, variable, entity name, architecture body, or similar object
consists of a letter followed by any number of letters or numbers, without space. A valid name
is also called a named identifier. VHDL is not case sensitive. However, an underscore may be
used within a name, but may not begin or end the name. Two consecutive underscores are

not permitted.”

5. Click the Create button.
Dialog Edit Custom Operator opens. Here, you can define your custom operator.
6. Click the Save button.

Now, your new custom operator is visible under the custom library it belongs to:

Visual Applets 3 25 Custom Operatos User’s Guide

BASLER’

Custom Library B X
Filter:| Tree « | (&
Marne Yersion
. MyCustomLibrary
¥ | MySecondCustomLibrary
MyFirstOperator
MySecondOperator
| YetAnotherCustomLibrary

Operator Library IUser Library Custom Library

Interrupting your Work

Once you have created a new custom operator and saved it to VisualApplets, you can
interrupt your work and proceed any time. To proceed, you go to the Custom Library tab,

open the library, right-click on the operator name, and from the sub menu, select Edit._

Custom Library B X
Filter: | | Tree * | \E
Marmne Yersion
. MyCustomLibrary
¥ | MySecondCustomhifary
MyFirstOperator - :
MySecondOperator | 0 Edit
. YetAnotherCustoml 'ﬂi Delete
4~ Protect / Unprotect
Export »
%% Create New Custom Library
gé- Rescan Custom Library Directory
Operator Library IUser Library Custom Library

Use Operator Template Instead

Alternatively, you can use the custom operator template provided in your VisualApplets

installation to define new custom operators. How to use the template, see section 11.2.

Visual Applets 3

26 Custom Operatos User’s Guide

BASLER’

3.3 Defining Basic Information about Custom Operator

In a first step, you define your custom operator’s interface.

1. Provide your vendor name. You can enter any string. This information is intended for

operator identification by the user.

2. Provide a version number for your operator, e.g., version 1.0. You can enter any number
but you should comply with the version scheme “<major>.<minor>". This information is

intended for operator version identification by the user.

? Edit Custom Operator *
MyFirstOperator

General | Inputs I Cutputs | GPIO I Memory Reqisters I Cores |

Mame: MyFirstOperator
MyFirstOperator 3 pe
[| Vendor: MNameQMyCompany
Version: 1.0
Simulation Library:
OPERATOR PARAMETERS
MName Width Type Tcon File:
HTML Help File:
A
[] Protected Cancel] [Save

3. Proceed to the tab Inputs.

Visual Applets 3 27 Custom Operatos User’s Guide

BASLER’

é Edit Custom Operator *

[Protected

MyFirstOperator
General Inputs | Outputs I GPIO I Memory I Registers I Cores |
MyFirstOperator Base Name Multiplicity Input Mode: | Synchronous Inputs =
I K
OPERATOR PARAMETERS Properties
Name Width Type Port Width: 32
Fifo Depth: 15 -

Format PicWidth Parall. Dimension Signess MaxWidth MaxHeight Alia EEJ
x
Cancel Save

3.4 Defining the Image Input Ports

Under tab Inputs, you describe the properties of the image input ports.

1. First of all, you define the input mode of your custom operator’s Imgln ports:

é Edit Custorn Operator *

MyFirstOperator

General Inputs | Cutputs | GPIO I Memory | Registers I Cores |

Input Mode: |Synchronous Inputs =

MyFirstOperator Base Name Multiplicity
Synchronous Inputs
ImginType1000 ImalnTypel 1 :
ImginType1004 gnlyp @ Asynchronous Inputs
ImginType1002 @ ﬁ
OPERATOR PARAMETERS Properties
Mame Width Type || portwidth: 32
Fifo Depth:
Format PixWidth Parall. Dimension Signess Max.Width Max.Heigh
1 g 4 lAlea * |unsigned = l ~
] m b
[Protected [Cancel] [Save

Visual Applets 3

28

Custom Operatos User’s Guide

BASLER’

Synchronous and Asynchronous Operator Ports

Operator ports can be synchronous or asynchronous. Being synchronous in VisualApplets
basically means that data of several ports is transferred synchronously, whereas ports which
are asynchronous to each other support non-aligned communication patterns.

Ports are only synchronous if they have a common M-source, or if they are sourced from a
SYNC module; any constellation of O-operators may be between that source and the ports.
Depending on the relation of the operator input ports to each other, we differentiate between

the following options:

1. Synchronous inputs: All input ports are synchronous to each other. There is one output

port.

2. Asynchronous inputs: Some of the input ports are asynchronous to each other and all

outputs are synchronous to each other.

Operators with asynchronous outputs are not allowed. Operators with synchronous inputs
may only have a single output. If more than one output is required, the inputs must be

declared as being asynchronous.

If you want to create an operator with multiple outputs, you need to declare its inputs to be

asynchronous. Multiple outputs are always synchronous.

Examples for both classes (built-in Visual-Applets operators):
m M-Operator with synchronous inputs
M @ Removelmage
: and one output
M-Operator with asynchronous inputs

! SYNC and multiple, synchronous outputs

Second, you can define one or more image input ports (Imgln). Each Imgln port may be used as

often as you specify.

2. Click on the plus button ‘ﬁto create a first image in (Imgln) port.

3. Give a name to the Imgln port.

Visual Applets 3 29 Custom Operatos User’s Guide

s

BASLER

@ Edit Custom Operator * ? *
MyFirstOperator

General Inputs Qutputs GPIO Memory Registers Cares

Base M Multiplici Input Mode: | Synchronous Inputs +
MyFirstOperator aseMame itiplicity q; P b 2
’) ImglnType A | 1 x
OPERATOR PARAMETERS Properties
Name Width Type Port Width:
Fifo Depth: 15 -

Format PixWidth Parall. Dimension Signess Max.Width Max.Height Alias E:h
1 Gray ~ 8 4 Area ¥ |unsigned ¥ =
[Protected Cancel Save

4. Double-click in the field of the Multiplicity column to create an array of ports. Multiplicity

>1 defines an array of ports with a name consisting of the base name and an index.

General Inputs

Outputs

GPIO Memory Registers Cores

Basze Mame

ImglnType_A_

Multiplicity | =i
3 E

'y
L4

Immediately, the operator depiction in the program window displays the entered array of Imgin

ports:
@ Edit Custom Operator * ? X
MyFirstOperator
General Inputs Qutputs GPIO Memory Registers Cores
Base Mame Multiplicity E:F Input Mode: | Synchronous Inputs

ImginType_A_ 2 x

MyFirstOperator ﬁ

ImglnType_A_ﬂﬂJd) 4}

ImginType_A_001&

In the Properties panel, you specify the properties of the protocols that are supported by this

Imglin port.
Visual Applets 3

30

Custom Operatos User’s Guide

BASLER’

@ Edit Custom Operator * ? *

MyFirstOperator

General Inputs Outputs GPIO Memory Registers Cores

Base N Multiplici Input Mode: | Synchronous Inputs -
MyFirstOperator ase Mame ultiplicity E:h P bl 23
ImginType_A_000@) ImginType A_ 2 x
ImginType_A_001@& @
OPERATOR PARAMETERS Properties
Name Width Type Port Width:
Fifo Depth: 15 -
Format PixWidth Parall. Dimension Signess Max.Width Max.Height Alias E:h
1 Gray ~ 8 4 Area * |unsigned = P
[Protected Cancel Save

5. Under Port Width, specify the width of the Imgln port.

6. Under Fifo Depth, specify the depth of the buffer FIFO for input data which at least needs
to be provided by the VA core. The value must be a power of two minus 1 between 15 and
1023.

For an image interface port, you define a list of allowed protocols. A protocol can be described by

the following properties:

= Gray or color format (single or three data components with aggregated width N)
= Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

= Pixel data bit width N = [1..64]

= Parallelism P ={1,2,4,8,16,32,64}

= 2D (Aray), 1D (Line), or OD (Raw)

= Data type uint or int

= Max. image dimensions

Implicitly it is assumed that the kernel size is 1x1.

The listed protocols are numbered starting from zero and therewith define an ID (in the image
below visible in the left hand column of the table in the Properties panel).

If you specify more than one protocol, you design the custom operator to support configuration of

Visual Applets 3 31 Custom Operatos User’s Guide

BASLER’

its input channel(s). In this case, several different protocols can be driven through a single port.
The user of your custom operator can select the protocol he wants to use on a specific Imgin port.
According to the selection made by the VA user, the corresponding ID will be output to the related
custom operator port. This enables the custom operator to adapt its behavior to the selected

protocol.

7. Under Format, specify the color format of the protocol.

@ Edit Custom Operator * ? o
‘ MyFirstOperator
General Inputs Outputs GPIO Memory Registers Cores
Base N Multiplici Input Mode: | Synch Inputs ¥
MyFirstOperator ase Name ultiplicity o nput Mode: | Synchronous Inpu
imginType_A_oooel | ImglnType A_ 2 X
ImainType_A_001@ ﬁ
OPERATOR PARAMETERS Propertes
MName Width Type Port width:
Fifo Depth: 15 -
Format \ Pix.Width Parall. Dimension Signess MaxWidth Max.Height Alias E:*
1 4 Area > | unsigned * K
Gray ﬁ
RGE
Hsl ¢
HsL
Hsv I
Yuv
Y¥CrCh
Protecte Cancel Save
O d LAB !
X¥Z

The following color formats are allowed:

= grayXxP: gray image with X bits per pixel and parallelism P

= rgbYxP: color image with Y/3 bits per color component (red, green, blue) and
parallelism P

= hsiYxP: color image with Y/3 bits per color component (HSI color model) and
parallelism P

= hslYxP: color image with Y/3 bits per color component (HSL color model) and
parallelism P

= hsvYxP: color image with Y/3 bits per color component (HSV color model) and
parallelism P

= yuvYxP: color image with Y/3 bits per color component (YUV color model) and
parallelism P

= ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and
parallelism P

= labYxP: color image with Y/3 bits per color component (LAB color model) and
parallelism P

= XxyzYxP: color image with Y/3 bits per color component (XYZ color model) and

Visual Applets 3 32 Custom Operatos User’s Guide

BASLER’

parallelism P

8. Double-click in the field of column Pix. Width and specify the pixel data width for the

specific format:

Properties

Port Width:
Fifo Depth: 15 -

Format PixWidth Parall. Dimension Signess Max.Width Max.Height Alias

1 Gray ¥ |12 4 Area ¥ unsigned ¥

=) X /4=

The value range of Pix.Width depends on your choice under Format:
Gray: The pixel data width (in the following referred to as X) is limited to 64 bit.

All color formats: The pixel data width (in the following referred to as ¥) must be a
multiple of 3 and is limited to 63 bit.

9. Double-click in the field of column Parall. and specify the parallelism for the specific

format.

The parallelism defines the number of pixels which are contained in a single data word at
the interface port. It must be chosen from following set of allowed values: P={1, 2, 4, 8,
16, 32, 64}. Packing of image data into words of a given interface width N (specified under

Port Width) must follow certain rules:

= The data of all P pixels must fit in a single word of length N. The data is stored LSB
aligned which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is
distributed as follows: Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

= For RGB images the three color components are packed LSB aligned into a sub
word[0..Y-1] in the following order: red uses the bits [0..Y/3-1], green the bits
[Y/3..2*Y/3-1] and blue the bits [2*Y/3..3*Y/3-1].

= For HSI color images the same rules than for RGB applies where H takes the role
ofred, S that of green and | the role of blue.

= For HSL color images the same rules than for RGB applies where H takes the role
ofred, S that of green and L the role of blue.

= For HSV color images the same rules than for RGB applies where H takes the role
ofred, S that of green and V the role of blue.

= For YUV color images the same rules than for RGB applies where Y takes the role

Visual Applets 3 33 Custom Operatos User’s Guide

BASLER’

ofred, U that of green and V the role of blue.

= For YCrCb color images the same rules than for RGB applies where Y takes the
roleof red, Cr that of green and Cb the role of blue.

= For LAB color images the same rules than for RGB applies where L takes the role
ofred, A that of green and B the role of blue.

= For XYZ color images the same rules than for RGB applies where X takes the role

ofred, Y that of green and Z the role of blue.

10. Under Dimension, specify if the protocol supports 2D (Area), 1D (Line), or OD (Raw) images.
ot
Fifo Depth:

Format PixWidth Parall. Dimension Signess Max.Width MaxHeight Alias

e =

11. Max.Width/Max.Height: Using these optional fields you can define constraints for the
image width and image height.

12. Repeat steps 7 to 11 to define as many protocols as you want the Imgln port to support.

13. Repeat steps 2 to 12 to define as many Imgln ports you want your custom operator to
provide.

@’ Edit Custom Operator * 7 *

MyFirstOperator

General Inputs Qutputs GPIO Memory Registers Cores
MyFirstOperator

ImginType_A_000@ Base Mame Multiplicity Input Mode: | Synchronous Imputs +

ImginType_A_001 ImginType_A_ 2 |z|
ImginType_B_000

ImginType_B_002@

4
OPERATOR PARAMETERS Properties
Name Width Type| port width:

Fifo Depth:
Format PixWidth Parall. Dimension Signess Max.Width MaxHeight Alias
1 8 4 Area * | unsigned " R
ar
&
[Protected Cancel | | Save

Visual Applets 3 34 Custom Operatos User’s Guide

3.5

Defining the GPIO Ports

BASLER’

The General Purpose I/0 interface allows connecting dedicated signal pins of the custom operator.

Every GPIO port maps to a pin of the custom operator which is either an input or an output.

Bidirectional pins are not supported. In VisualApplets, the corresponding operator ports are of

type SIGNAL.

1. Gototab GPIO.

2. Add as many GPIs and GPOs as you want, using the plus button i's .

3. Double-click into the field to give a name to a specific GPl or GPO.

The defined GPIs and GPOs are immediately displayed in the depiction of the custom operator in

the upper left hand panel of the program window:

@ Edit Custom Operator * ? X
MyFirstOperator
General Inputs Outputs GPIO Memary Registers Cores
General Purpose Input Signals
MyFirstOperator EE:-: "ﬂi
T @ImgQuiType X_ - x
=~ FGPO_
GPILA Firn 4
GPI_BY PO g
General Purpose Output Signals
OPERATOR PARAMETERS GPO_X e
Mame Width Type GPO_Y x
GPO_Z
[Protected Cancel Save

Bidirectional Pins not Supported

The pins are either an input or an output. Bidirectional pins are not supported.

Visual Applets 3

35

Custom Operatos User’s Guide

3.6 Defining the Image Output Ports

BASLER’

Under tab Outputs, you describe the properties of the image output ports.

@& Edit Custom Operator *

MyFirstOperator

MyFirstOperator
ImginType_A_000 @

ImginType_B_000

ImginType_B_002@&

ImginType_A_001 @ImglutType_X_000

ImginType_B 0@ @ImgOutType_X_001

General Inputs Outputs GPIO Memory

Reqgisters Cores

Base Mame Multiplicity

S N
@

&

Properties
OPERATOR PARAMETERS
Mame Width Type Port Width:
Fifo Depth: 1023 «
Format PixWidth Parall. Dimension Signess Max.Width Max.Height Alias
1 8 4 |Area ¥ | unsigned " R
[Protected | Cancel || Save |

You can define one or more image output ports (ImgOut). Each ImgOut port may be used as often

as you specify.

1. Click on the plus button to create a first image out (ImgOut) port.

2. Give a name to the ImgOut port.

Visual Applets 3

36

Custom Operatos User’s Guide

BASLER’

@ Edit Custom Operator * 7 X
‘ MyFirstOperator
General Inputs Qutputs GPIO Memary Registers Cores
MyFirstOperator Base Mame Multiplicity

ImginType_A_000 @&

ImginType_A_001 ImgQutType_X | 1 lzl

ImglnType_B_ﬂﬂJ: IolmgomType_x_ A

ImginType_B_001@ @,

ImginType_B_002@

Properties
OPERATOR PARAMETERS
MName Width Type Port Width:
Fifo Depth: 1023 -
Format PiWidth Parall. Dimension Signess Max.Width MaxHeight Alias
=
I 0 X
[Protected | Cancel || Save |

3. Double-click in the field of the Multiplicity column to create an array of ports. Multiplicity

>1 defines an array of ports with a name consisting of the base name and an index.

Cores

Multiplicity

v

L

General Inputs Qutputs GPIO Memory Registers

Base Mame

ImgQOutType_X_

Immediately, the operator depiction in the program window displays the entered array of ImgOut

ports:
@’ Edit Custom Operator ? *
MyFirstOperator
General Inputs Qutputs GPIO Memary Registers Cores
MyFirstOpepator
Base Mame

ImginType_A_000 &
ImginType_A_001
ImginType_B_000
ImginType_B_001&
ImginType_B_002 @&

 @ImgOutType_X_002

@ImgOutType_X_000
2ImgOutType_X_001

@ImgOutType_X_003

Multiplicity
X

@
¥

In the Properties panel, you specify the properties of the protocols that are supported by this

ImgOut port.

Visual Applets 3

37

Custom Operatos User’s Guide

BASLER’

@’ Edit Custom Operator ? *
MyFirstOperator
General Inputs Outputs GPIO Memaory Registers Cores
MyFirstOperator
ImginType_A_000@ ®ImgOutType_X 000 Base Mame Multiplicity
ImginType_B_000 o - RTH
ImginType_B_001@—— ®IMmgoutType_X | ar
ImginType_B_002& @ImgQutType_X_003 £
OPERATOR PARAMETERS Properties
Name Width Type | | port width:
Fifo Depth:
Format PixWidth Parall. Dimension Signess Max.Width Max.Height Alias
=
1 3 4 Area * |unsigned = ‘)"C
[Protected Cancel | | Save

4. Under Port Width, specify the width of the ImgOut port.

5. Under Fifo Depth, specify the depth of the buffer FIFO for output data which at least needs
to be provided by the VA core. The value must be a power of two minus 1 between 15 and
1023.

For an image interface port, you define a list of allowed protocols. A protocol can be described by

the following properties:

= Gray or color format (single or three data components with aggregated width N)
= Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

= Pixel data bit width N = [1..64]

= Parallelism P ={1,2,4,8,16,32,64}

= 2D (Aray), 1D (Line), or OD (Raw)

= Data type uint orint

= Max. image dimensions

Implicitly it is assumed that the kernel size is 1x1.

The listed protocols are numbered starting from zero and therewith define an ID (in the image

below visible in the left hand column of the table in the Properties panel).

Visual Applets 3 38 Custom Operatos User’s Guide

BASLER’

If you specify more than one protocol, you design the custom operator to support configuration of
its input channel(s). In this case, several different protocols can be driven through a single port.
The user of your custom operator can select the protocol he wants to use on a specific ImgQOut
port. According to the selection made by the VA user, the corresponding ID will be output to the
related custom operator port. This enables the custom operator to adapt its behavior to the

selected protocol.

6. Under Format, specify the color format of the protocol.

Mame Width Type Part Width:

Fifo Depth: 15 -
e

Format \PixWidth Parall. Dimension Signess Max Width Max.Height Alias

v o
Gray

RGE
Hsl

HSL
HS5Y
YUV

YCrCh
[protected LAB Cancel Save

4 Area ~ unsigned *

&= X 4=

| et

The following color formats are allowed:

= grayXxP: gray image with X bits per pixel and parallelism P

= rghYxP: color image with Y/3 bits per color component (red, green, blue) and
parallelism P

= hsiYxP: color image with Y/3 bits per color component (HSI color model) and
parallelism P

= hslYxP: color image with Y/3 bits per color component (HSL color model) and
parallelism P

= hsvYxP: color image with Y/3 bits per color component (HSV color model) and
parallelism P

= yuvYxP: color image with Y/3 bits per color component (YUV color model) and
parallelism P

= ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and
parallelism P

= labYxP: color image with Y/3 bits per color component (LAB color model) and
parallelism P

= xyzYxP: color image with Y/3 bits per color component (XYZ color model) and

parallelism P

7. Double-click in the field of column Pix.Width and specify the pixel data width for the

Visual Applets 3 39 Custom Operatos User’s Guide

BASLER’

specific format:

Properties

Port Width:
Fifo Depth: 5 -

Format PiWidth Parall. Dimension Signess Max.Width Max.Height Alias

1 Gray ~ |12 4 Area ~ unsigned ¥

&= X| -

The value range of Pix.Width depends on your choice under Format:
Gray: The pixel data width (in the following referred to as X) is limited to 64 bit.

All color formats: The pixel data width (in the following referred to as ¥) must be a

multiple of 3 and is limited to 63 bit.

8. Double-click in the field of column Parall. and specify the parallelism for the specific

format.

The parallelism defines the number of pixels which are contained in a single data word at
the interface port. It must be chosen from following set of allowed values: P={1, 2, 4, 8,
16, 32, 64}. Packing of image data into words of a given interface width N (specified under

Port Width) must follow certain rules:

= The data of all P pixels must fit in a single word of length N. The data is stored LSB
aligned which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is
distributed as follows: Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

= For RGB images the three color components are packed LSB aligned into a sub
word[0..Y-1] in the following order: red uses the bits [0..Y/3-1], green the bits
[Y/3..2*Y/3-1] and blue the bits [2*Y/3..3*Y/3-1].

= For HSI color images the same rules than for RGB applies where H takes the role
ofred, S that of green and | the role of blue.

= For HSL color images the same rules than for RGB applies where H takes the role
ofred, S that of green and L the role of blue.

= For HSV color images the same rules than for RGB applies where H takes the role
ofred, S that of green and V the role of blue.

= For YUV color images the same rules than for RGB applies where Y takes the role
ofred, U that of green and V the role of blue.

= For YCrCb color images the same rules than for RGB applies where Y takes the

roleof red, Cr that of green and Cb the role of blue.

Visual Applets 3 40 Custom Operatos User’s Guide

BASLER’

= For LAB color images the same rules than for RGB applies where L takes the role

ofred, A that of green and B the role of blue.

= For XYZ color images the same rules than for RGB applies where X takes the role

ofred, Y that of green and Z the role of blue.

9. Under Dimension, specify if the protocol supports 2D (Area), 1D (Line), or OD (Raw) images.

Properties

Port Width:
Fifo Depth: 5 =

1 Gray ~ |12

Format Pix.Width Parall. Dimension

Signess Max.Width Max.Height Alias

4 Area ~ | unsigned ~

Area

Line
Raw

Ll G

10. Max.Width/Max.Height: Using these optional fields you can define constraints for the

image width and image height.

11. Repeat steps 7 to 11 to define as many protocols as you want the ImgOut port to support.

12. Repeat steps 2 to 12 to define as many ImgOut ports you want your custom operator to

support.

? Edit Custom Operator *

[T Protected

MyFirstOperator
General Inputs Qutputs | GPIO | Memory I Registers | Cores |
MyFirstOperator
ImginType1_000@ @ImgOut_A_000 facchiame Muttiplicity
ImginType1_004 @ImgOut_A_001 ImgOut_A 2 @
ImalnType1_002 @ @ImgOut_B_000 -
ImginTypei_003@ 2 ImgQut_B_001 ImgOut_B_ 3
ImglinType1_004 @ @ImgOut_B_002 4}
OPERATOR PARAMETERS Properties
Name Width Type Port Width: 32
Fifo Depth:
Format PieWidth Parall. Dimension Signess Max.Width Max.Heigh
1 8 4 [Area * | unsigned 'l A
] 1 3
[Cancel] [Save

Visual Applets 3

41

Custom Operatos User’s Guide

3.7 Defining the Memory Ports

BASLER’

A custom operator may be set up for accessing one or more banks of memory (DRAM, SRAM, ...).

All memory ports have a FIFO-like interface for write and read commands. The FIFOs reside in the

VA part of the custom operator, so that you only need to implement a flow control, but not the

FIFO. The timing of forwarding the FIFO content to the memory controller attached to the custom

operator is fully controlled by VisualApplets.

Under the Memory tab, you can define that your operator gets access to external memory. You

can specify up to 4 ports. You can specify the memory interface properties the operator needs.

Comply with Memory Layout of Target Platforms

@ Keep in mind the memory layout of potential target platforms (on which the applets

containing the custom operator will run).

@ Edit Custom Operator 7 b4
MyFirstOperator
General Inputs QOutputs GPIO Memory Registers Cores
MyFirstOperator Number of Memory Ports:
|mg|nTy|:;lA;° :g“ch_’;‘(‘Type—x— Data Width: 15 [%
GPI: ~ :gg:; Address Width: 16 [%
MNumber of Write Flags:
Mumber of Read Flags: 2 |5
OPERATOR PARAMETERS
Name Width Type Sync. Mode: SyncToDesignClk2x
[Protected Cancel Save
Parameter name Type Description
Data Width Integer Data width
Address Width Integer Address width

Visual Applets 3

42

Custom Operatos User’s Guide

BASLER’

Number of Write Flags Integer Width of flag for marking write accesses. This
(Width) parameter must be >= 1.

Number of Read Flags Integer Width of flag for marking read accesses. This
(Width) parameter must be >= 8.

SyncMode String This parameter signals the relation of the

memory interface clock and the design clock.

Following values are possible:

“SyncToDesignClk” — memory interface ports

are synchronous to iDesignClk.

“SyncToDesignClk2x” — memory interface

ports are synchronous to iDesignClk2x.

3.8 Defining the Registers of the Custom Operator

Under the Registers tab, you can define the write and read registers your custom operator will
provide. Each of this registers is accessed in VisualApplets via a dedicated operator parameter.

(The parameter name is the same as the register name.)

Go to the Registers tab.
Under Write Registers, define the write registers you want your custom operator to have.
Define a specific width for each write register.

Under Read Registers, define the read register you want your custom operator to have.

A A

Define a specific width for each read register.

The related operator parameters are immediately displayed in the left hand lower panel of the

dialog window:

Visual Applets 3 43 Custom Operatos User’s Guide

BASLER’

@ Edit Custom Operator * ? X
MyFirstOperator
General Inputs Qutputs GPIO Memory Reqisters Cores
MyFirstOperator Write Registers
ImginType_A. @ImgOutType X_ :
g !l"DGe;I ;:rﬁOGPO_X MName Width op
- @GPO_Y MNameOfOperatorinstance 1 x
GPI_B@ @GPO 7
- @
OPERATOR PARAMETERS
me T €
< NameOfOperatorinstance 1 Write wead Registers
M Width
omeSortOfReadOnlyParameter 1 Read /) amne : E:a
SomeSortOfReadOnlyParameter x
[protected Cancel Save

6. Click Save.

Visual Applets 3 44 Custom Operatos User’s Guide

BASLER’

4 Generation of VHDL Black Box and Test Bench

After you have entered all details as described in section 3, you are ready for the actual VHDL

coding. First of all, you need VisualApplets to generate the VHDL black box and test bench.

To trigger VHDL black box and test bench generation:

1. Inthe Library panel of the VisualApplets program window, go to the Custom Library tab.

2. Open the custom library and select the custom operator you want to implement.

3. Right-click on the operator name, and from the sub menu, select Export -> VHDL.

Custom Library g X
Filter: LA R
MName Version

. MyCustomLibrary
¥ . MySecondCustomlLibrary
MyFirstOperator
MySecondOperat o Edit
. YetAnotherCustor ﬂ Delete
,a.-: Protect / Unprotect

Export

& Create New Custom Librrary
5} Rescan Custorn Library Directory

Operatar Library Lser Library Custom Library

:

4. Specify the folder where you want the created VHDL files to be stored.

Now, the generation starts. After successful generation, you get the following message:

w Custom Operator Libray >

WHOL file(s) exported successfully!

You find all generated files in the folder you specified:

Visual Applets 3 45

Custom Operatos User’s Guide

BASLER’

I = | MyFirstOperator - O >
Start Freigeben Ansicht 0
* U th « Verschieben nach ¥ Laschen - %' =4 EE
An Schnellzugriff Kopieren Einflgen “_" Kopieren nach I Umbenennen = Meuer i Eigenschaften Auswihlen

anheften IE' Ordner - e
Zwischenablage Organisieren Meu Offnen
&« v <« CustomLibrary » CustomOperators » MyFirstOperator w | "MyFirstOperator” durchsuch... @
Schne * Name a Anderungsdatum Typ Grafe
| IE; D custemOp_CentrolSim.vhdl 03.08.2016 D641 VHDL-Datei 9KB
$ o [custemOp_GPInSim.vhdl 03.08.2016 06:41 VHDL-Datei 7KB
D+ [custemOp_GPOutSim.vhdl 03.08.2016 06:41 VHDL-Datei 6 KB
D custemOp_lmglnSim.vhdl 03.08.2016 06:41 VHDL-Datei 11 KB
) 6 D custemOp_lmgQutSim.vhdl 03.08.2016 D641 VHDL-Datei 13 KB
D# D custemnOp_MemeoryinterfaceSim.vhd| 03.08.2016 D6:41 VHDL-Datei 13 KB
Sist [] FifoEmulator.vhdi 03.08.2016 D6:41 VHDL-Datei TKB
J’ P D MemuoryEmulatorwvhdl 03.08.2016 06:41 VHDL-Datei 8 KB
=B & rodelsim_pra) 03.08.2016 D641 Textdokurnent 1KB
Cust D MyFirstOperator.vhdl 03.08.2016 D6:41 VHDL-Datei 5KB
Para MyFirstOperator_Control_Stimuli 03.08.2016 06:41 Textdokurnent 2KB
MyFirstOperator_Stimuli_lmglnType_A_0 03.08.2016 D6:41 Textdokurnent 1KB
Para MyFirstOperator_Stimuli_ImgOutType X.0 03.02201606:41 Teddokument 1KB
Seren MyFirstOperator_Stimuli_iSig_GPI_A 03.08.2016 D6:41 Textdokument 1KB
& Oneli MyFirstOperator_Stimuli_iSig_GPI_B 03.08.2016 06:41 Textdokurnent 1KB
[] MyFirstOperator_TE.wvhdl 03.08.2016 06:41 VHDL-Datei 18 KB
[Dieser ¥
16 Elemente f=2| =]

Visual Applets 3 46 Custom Operatos User’s Guide

BASLER’

5 Operator Interface Ports

The generated black box provides all ports you specified via the GUI (see section3).
In this chapter, you find a detailed description of how these ports look like in the generated VHDL

black box.

5.1 Clock System, Reset and Enable

VisualApplets supports two clock domains. There is a base design clock and one derived clock
which is in phase with that clock and has double frequency. Accordingly, there are two clock inputs

to the Custom Operator. Additionally, there is a Reset and Enable input as described above.

Port Direction | Width | Description
iDesignClk In 1 Base design clock
iDesignClk2x In 1 Clock sync. to iDesignClk but

double frequency

iReset In 1 Reset of operator

iEnable In 1 Enable processing

5.2 Parameter Interface

The definition of write register ports as described in section 3.8 (XML!: Operator/I0/RegInInfo)
leads to an interface as follows where PORTID is the register name and PORTIDWidth is the

defined register width (in XMl defined in the corresponding entry of Operator/Regin).

L All entries you make to specify the interface of your custom operator (section 3) are written into an XML

file.Information about structure and syntax of this XML file is provided in the Appendix, section 12.1 .

Visual Applets 3 47 Custom Operatos User’s Guide

BASLER’

Port Direction | Width Description
ivReg PORTID D In PORTIDWidth Register data
iReg_PORTID Wr In 1 Signal write access

The definition of read register ports as described in section 3.8 (XML: Operator/I0/RegOutInfo)

leads to the following interface, accordingly:

Port Direction | Width Description
ovReg PORTID_D Out PORTIDWidth Register data
iReg_PORTID_Rd In 1 Signal read access

5.3 Image Communication Interfaces

For communication of data between the VisualApplets core and a Custom Operator, image
communication ports as described in section 3.4 may be configured. Communication is done

via a simple FIFO interface and an additional format identifier port.

5.3.1 Interfaces of Type Imgin

An ImgIn channel for transferring data from the VisualApplets core to a Custom Operator leads to
an interface as follows where PORTID is the name of the corresponding port type name (XML:
attribute Operator/Imgin/name referenced by Operator/IO/Imgininfo) and X is a port number for

differentiating several ports of the same kind:

Port Direction | Width Description

ivPORTIDXData In PORTIDWidth Data entering the

Custom Operator

OPORTIDXRead Out 1 Accept input data

Visual Applets 3 48 Custom Operatos User’s Guide

BASLER’

Port Direction | Width Description

iPORTIDXEndOfLine In 1 Signal end of line. If
this flag is activated
data doesn’t contain

pixel values.

iPORTIDXEndOfFrame In 1 Signal end of frame. If
this flag is activated
data doesn’t contain
pixel values. This flag
is only asserted when

end of line is signaled

as well.
iPORTIDXFIFOEmpty In 1 Buffer FIFO is empty
ivPORTIDXFIFOCnt In Ceil Log2(Number of words in

buffer FIFO. This

signal can be used to

PORTIDFIFODepth

) generate FIFO flags

like Almost Empty.

ivPORTIDX_FID_D In Ceil Log2(N) Predefined parameter
which notifies about
the current image
data format. N is the
number of image
formats specified for

this port.

Figure 3 illustrates the data flow at an ImgIn port. The port name component PORTIDX has been
substituted by ‘ImgIn’. The waveform shows the input of a two dimensional frame of size 3x2.
When the ImgIn port is part of several O-synchronous input ports, all of them must consume the

FIFO data simultaneously. In that case the FIFO fill level of all ports will exactly match so the

Visual Applets 3 49 Custom Operatos User’s Guide

BASLER’

operator only needs to implement flow control according to the fill level of one out of several O-

synchronous inputs.

iDesignClk | | | | | | | | | | |

ivimginData 00000000 fooooo01A oooo001B [0000001C J00000000 0000002A [0000002B 0000002C |00000000

ilmgInEndOfLine []

ilmgInFIFOEmpty |

0000

|

iImgInEndOfFrame l_—|
|

|

ivimgInFIFOCnt 0000 {0001

olmglnRead | |

Figure 3: Waveform illustrating the protocol on an image input port.

5.3.2 Interfaces of Type ImgOut

An ImgOut channel for transferring data from a Custom Operator to the VisualApplets core leads
to an interface as follows where PORTID is the name of the corresponding port type name (XML:
attribute Operator/ImgOut/name referenced by Operator/I0/ImgOutinfo) and X is a port number for

differentiating several ports of the same kind:

Port Direction | Width Description
OoVPORTIDXData Out PORTIDWidth Output data
OPORTIDXValid Out 1 Output data valid
OPORTIDXEndOfLine Out 1 Signal current write

access as end of line
notification. Write
data is then not
interpreted as pixel

data.

OPORTIDXEndOfFrame Out 1 Signal current write
access as end of
frame notification.
Write data is then not

interpreted as pixel

Visual Applets 3 50 Custom Operatos User’s Guide

BASLER’

Port Direction | Width Description

data. This flag needs
to be correlated with
an end of line strobe

at the same time.

iPORTIDXFIFOFull In 1 Buffer FIFO is full, no
further data is
accepted

ivPORTIDXFIFOCnt In Ceil Log2(Number of words in

buffer FIFO. This

signal can be used to

PORTIDFIFODepth

) generate FIFO flags
like Almost Full.
ivPORTIDX_FID_D In Ceil Log2(N) Predefined

parameter which
notifies about the
current image data
format. N is the
number of image
formats specified for

this port.

Figure 4 illustrates the data flow at an ImgOut port. The waveform shows the output of a two
dimensional frame of size 3x2. When the ImgOut port is part of several O-synchronous output

ports all of them must emit data simultaneously.

iDesignClk
ovimgQuiData 00000000 |0000001A J0000001B J0000001C [00000000 f0000002A 00000028 [0000002C 00000000
olmgOutValid | \
olmgOutEndOfLine [l [
m

olmgOutEndOfFrame
iImgOutFIFOFull
ivimgOutFIFOCnt 0 [1 J2 [1 fo

Figure 4: Waveform illustrating the protocol on an image output port.

Visual Applets 3 51 Custom Operatos User’s Guide

5.4 Memory Interfaces

BASLER’

A Custom Operator may be set up for having up to four memory ports. The I/O ports of the

generated interface get a suffix X where X is the index of the memory port (XML:

Operator/I0/MemInfo).
Name Direction | Width Description
ovMemWrDataX Out MemDataWidthX | Write data output to memory
via VisualApplets core
ovMemWrFlagX Out MemWrFlagWidthX | Write flag output
ovMemWrAddrX Out MemAddrWidthX | Write address
oMemWrAddrValidX Out 1 Emit write command
oMemWrPriorityX Out 1 Request priority for this write
port
iMemWrAlmostFullX In 1 Only single further write
command may be accepted
iMemWTrFullX In 1 No write command is accepted
as concerning FIFO is full
iMemWrEmptyX In 1 FIFO for write commands is
empty
ivMemWrCntX In 4 Number of buffered write
commands
ivMemWrFlagX In MemWrFlagWidthX | Write flag output from the
VisualApplets core
Visual Applets 3 52 Custom Operatos User’s Guide

BASLER’

Name Direction | Width Description
iMemWrFlagValidX In 1 Write flag input valid — signals
that iMemWTrFlagX is valid,
which means that write access
which had been marked with
corresponding oMemWrFlagX
has been executed.
ovMemRdFlagX Out MemRdFlagWidthX | Read flag
ovMemRdAddrX Out MemAddrWidthX | Read address
oMemRdAddrValidX Out 1 Emit read command
oMemRdPriorityX Out 1 Request priority for this read
port
iMemRdAlmostFullX In 1 Only single further read
command may be accepted
iMemRdFullX In 1 No read command is accepted
as concerning FIFO is full
iMemRdEmptyX In 1 FIFO for read commands is
empty
ivMemRdCntX In 4 Number of buffered read
commands
ivMemRdFlagX In MemRdFlagWidthX | Read flag input — only valid
when iMemRdDataValidX is
asserted
ivMemRdDataX In MemDataWidthX | Read data input
Visual Applets 3 53 Custom Operatos User’s Guide

BASLER’

Name

Direction

Width

Description

iMemRdDataValidX

In

Read data valid

iMemWTrClk

ovMemWrData XXXXXXXX J0000000A

J0000000B)0000000C

00000000 [XXXXXXXX

ovMemWTrFlag X fo

1 X

ovMemWrAddr XXXXX | 00000

Joooot1 | Jooooz

00003 XXXXX

oMemWrAddrValid

]

oMemWrPriority

iMemWrAlmostFull

iMemW rFull

iMemWrEmpty

ivMemWrCnt 0000

fooo1

foooo

ivMemWrFlag X

)

iMemWTrFlagValid

iMemRdClk

N I [e G

ovMemRdFlag X

ovMemRdAddr XXXXX

foooo

0 Joooo1

looo02

joo003

oMemRdAddrValid

oMemRdPriority

iMemRdAImostFull

iMemRdFull

iMemRdEmpty

ivMemRdCnt 0000

Jooo1

{0000

ivMemRdFlag X

fo i X

ivMemRdData XXXXXXXX

—
L

0000000A | J00D0000B)0000000C [0000000D |xicovecs

ivMemRdDataValid

| L

Figure 5: Waveform illustrating the memory interface protocol.

5.5

General Purpose 1/0 pins

Any GPIO input or output signal which has been defined in the interface description of the custom

operator (section 3) has a corresponding input or output port in the resulting operator interface.

The following ports will be created when the general purpose pins are declared (in XML with the
name NAME within Operator/IO/Reglninfo or Operator/IO/RegOutinfo):

Visual Applets 3

iSig_NAME for a GPIO input signal called NAME
oSig_NAME for a GPIO output signal called NAME

54

Custom Operatos User’s Guide

BASLER’

6 VHDL Simulation and Verification

For emulating a VisualApplets design which contains a custom operator module, VisualApplets

creates a simulation test bench for the interfaces connecting to the custom operator.

Each interface port is emulated independently, driven by File I/0. The simulation entity shall

consist of following elements:

= Emulation of register access. According to a stimuli file a set of registers can be
written and read.

= Emulator for frame source connected to ports of type Imgln. Stimulated by file
these kinds of modules output frame data to Imgin.

= Emulator for frame sink connected to ports of type ImgOut. This kind of module
emulates an operator which is connected to ImgOut. The module writes the
received data to file.

= Memory port emulator.

= GPIO emulator. Each GPIO signal for input is driven by a signal generator which is
configured by a file. Each GPIO signal output is monitored and changes of the

signal are written to a report file.

6.1 Simulation Framework

For RTL level simulation, VisualApplets creates a VHDL file containing a package with the name
Cus t omOper at or <OPERATORNAME> where <OPERATORNAME> is the given operator

name.

This package contains the components <OPERATORNAME?> and <OPERATORNAME> TB where
the latter is a test bench of the interface between the VisualApplets design and the Custom
Operator. The following shows the resulting code for a simple Custom Operator called RegExample

consisting only of a read and write register port (‘Ctrl’ and ‘Status’), each 4 bit wide:

component
RegExampleport (
iDesignClk: in std logic := '0';
iDesignClk2x: in std logic :=
'0';1iReset: in std logic := '0';
iEnable: in std logic := '0';
ivReg Ctrl D: in std logic vector (3 downto

Visual Applets 3 55 Custom Operatos User’s Guide

BASLER’

0);iReg Ctrl Wr: in std logic;
ovReg Status D: out std logic vector (3 downto 0);
iReg Status Rd: in std logic

)7

end component;

component
RegExample TBgeneric (
DesignClkPeriod: time := 16 ns;
Register StimuliFileName: string := ""
)7

end component;

The test bench creates an instance of the custom operator and connects protocol emulation
modules to each interface ports. The following sections describe the different kinds of emulators,

how they may be controlled via stimuli files, and how output files are generated.

6.2 Emulation of Register Interface

The generated test bench implements an emulator for a register access interface. The emulator is
configured for addressing a design with a single process. Addresses of write and read registers
start from 0x4 where addresses for registers are counted up with an increment of 1 according to
the sequence of the register interface ports in the given custom operator component (like the
above example component RegExample). Register addresses for reading and writing are counted
independently. The emulator is driven by a text file which is set by the entity parameter

Register_StimuliFileName as provided in the above VHDL code.

The following commands may be present in the stimuli file:

REM Rest of line is comment

GRS Emulate global reset

Emulate process reset. This command has the following syntax,

PRS PRS <procNr>

where the parameter <procNr> must always be 0.

Visual Applets 3 56 Custom Operatos User’s Guide

BASLER’

Enable process. The syntax is as follows,

PEN PEN <procNr> <value>

with <procNr> being always 0 and <value> signaling the enable state.

Wait for a number of clock cycles. The syntax is as follows,

WCK WCK <clock_ticks>

with <clock_ticks> giving the number of clock ticks in hexadecimal format

Write to register,

WRR <wrRegAddr> <value>

With the parameters:

WRR
<wrRegAddr>: address of register (hex)
<value>: hexadecimal register value
RDR Read from register,

RDR <rdRegAddr>

with <wrRegAddr> being the register address (hex).

After the last parameter of any command, a comment may be added preceded by ‘#'.

The following code is an example stimuli file which accesses the registers according to the above

given test bench RegExample TB:

REM

R I S g dh Ib Sb b b b b b b b 2 g g S S Sb Ih b b b b b b b 2 S SR Sh Ib Ib Sb (b b b b e 2 S d SR Sh Sh Ib b b b b b S S SRS

REM Command formats:

REM GRS -> Global reset

REM GEN <value> -> Set global enable to <value>
REM PRS <procID> -> Reset process <procID> (0

F) REM PEN <procID> <value> -> Set enable of process

<procID> to
<value>
REM WCK <clk ticks> -> Wait for <clk ticks> clock

Visual Applets 3 57 Custom Operatos User’s Guide

BASLER’

cycles REM WRR <wrRegAddr> <value> -> Write <value> to register

<wrRegAddr>REM RDR <rdRegAddr>

<rdRegAddr>

-> Read from register

REM Rk b b b b b b b b b b b 2 b I R b b b b b b b b b b b 2 S S S I b S b b g d b d b b b d b 2 e d b 2 I 4

WCK 0004 #

GRS

GEN 1
WCK 0001
PRS O
PEN 0 1

H o % o

WCK 0002
WRR 0004 0000000A

=

WCK 0002
RDR 0004
WCK FFFF

wait for 4 clock
cycles
global reset

set global enable
wait for 1 clock tick
reset process 0

set enable of process
0
wait for 2 clock ticks

write OxA to address
0x4

wait for 2 clock ticks

read from address 0x4

6.3 Emulation of Imgln Interface

The emulation of image communication interfaces of type Imgln is driven by a stimuli file

providing information about the sequence of data which enters the Custom Operator. For any

present Imgln port the test bench has a generic <PORTIDX>_StimuliFileName where <PORTIDX> is

the name of the corresponding image input port type followed by the port number. Each line

within the given file must follow the syntax,

<Command> <Data> <EndOflLine> <EndOfFrame> <DataValid>

where <Command> is a three letter command, <Data> provides an hexadecimal data word, and the

three remaining parameters correspond to the image protocol flags.

Visual Applets 3

58

Custom Operatos User’s Guide

BASLER’

The following table describes the available commands:

Data command. This command provides data which will become input at the
DAT

port ivPORTIDXData and the associated image protocol flag ports.

Wait command. The parameter <Data> provides the number of clock ticks for
WCK

which the command interpreter pauses.
- Set FID input. The parameter <Data> provides the value to which the port

ivPORTIDX_FID_D will be set.

To any command line a comment may be added, preceded by ‘#.

The following code is an example stimuli file which causes the input of an 3x2-image:

FID
DAT

DAT
DAT
DAT
DAT
WCK
DAT
DAT

DAT
DAT

WCK

00000001
00000000

0000001a
0000001b
0000001c
00000000
00000004
0000002a
0000002b

0000002c

o O O B O O o O o

(@}

o O O O O o o o o

(@}

0
0
1
1
1
1
0
1
1

1

00000000 1 1 1

0000FFFF

#Format:

Cmd Data (hex) EndOfLine EndOfFrame DataValid

6.4 Emulation of ImgOut Interface

The emulation of image communication interfaces of type ImgOut is driven by a stimuli file where

information is provided about the sequence of FID states. For any present ImgOut port the
VA_Design_Emulator entity has a generic <PORTIDX>_StimuliFileName where <PORTIDX> is the

name of the corresponding image output port type followed by the port number. The syntax is

exactly the same as in the case of the stimuli for Imgln interfaces except that no DAT command is

available. A simple stimuli file may look like,

Visual Applets 3

59 Custom Operatos User’s Guide

BASLER’

WCK 00000010 0 0 O #Format: Command Data (hex)
FID 00000001 O O O
WCK OOOOFFFF 0 0 O

where the parameters <EndOfLine>,<EndOfFrame> and <DataValid> are actually meaningless.

The ImgOut interface emulator present in the generated test bench writes the received data to
file. For that purpose the test bench entity has a generic <PORTIDX>_DumpFileName. During
simulation a file with the given name is created and the data is written using DAT and WCK
commands in a format, which exactly corresponds to the stimuli file format for an Imgin interface

emulator.

6.5 Emulation of Memory Communication

When the Custom Operator implements an interface to memory the test bench connects a
memory emulation module to the corresponding interface ports. The Custom Operator may not
rely on a certain timing of the memory interface (like time until read data is returned) as this is
fully controlled by VisualApplets and may vary between platforms and even between different

designs.

6.6 GPIO Emulation

The emulation of dedicated input signals is done for each signal independently, driven by a stimuli
file. There information is provided about the sequence of signal states. The stimuli file may consist
of a number of commands which are described below. For any present output signal port the test
bench entity has a generic iSig_ <NAME>_StimuliFileName where <NAME> is the concerning port

name.

The following table describes the available commands:

Set signal. This command provides the signal state to which the output at the
porti Si g_ NAME will be set. The next command will be executed one clock

tick later. It has the syntax,
SET

SET <value>

where <value> may be 0 or 1.

Visual Applets 3 60 Custom Operatos User’s Guide

BASLER’

Wait command. It has the syntax,

WCK <ticks>
WCK

where the parameter <ticks> provides the number of clock ticks for which

the signal will be held constant.

Restart from begin. The command interpreter will start again from the first
line of the stimuli file. This command does not have any parameters. The

RST
command will execute the first command of the file at the same clock tick

allowing assembling a loop without a gap.

Stop at current state. The command interpreter will stop and the current
STP signal state will be held constant until end of simulation. This command does

not have any parameters.

To any command line a comment may be added, preceded by ‘#'.

The following code is an example stimuli file which causes the Custom Operator input signaltoggling being
low for 5 clock cycles and high for 7 clock cycles (synchronous to iDesignClk):

SET O # deassert output

WCK 0004 # wait for 4 clock cycles
SET 1 # assert output

WCK 0006 # wait for 6 clock cycles
RST # restart from begin

Dedicated output signals are monitored writing a dump file 0Sig_<NAME>_DumpFileName where
<NAME> is the concerning port name. The file is composed of SET and WCK commands exactly

corresponding to the commands of the stimuli file for an dedicated input signal.

Visual Applets 3 61 Custom Operatos User’s Guide

BASLER’

7 Defining the Custom Operator’s Software Interface

The following software components must be provided for fully integrating a custom operator to

VisualApplets:

1. High-level simulation component
2. Throughput analysis

The software components need to be compiled to a dynamic link library with a predefined set of

exported C-Functions.

You add this file to the operator specification under tab General / Simulation Library:

@ Edit Custom Operator ? X

| MyFirstOperator |

General Inputs Outputs GPIO Memory Reqisters Cores

MyFirstOperator Name; | MyFirstOperator |

ImginType_A, h"MQOntType,x,
y “::l;l ;0 ($GPO_X Vendor: |Nar’r\el]ﬁ'lh!'t:ompanl!I |
= @GPO_Y

IS\muIahon Library: = I
'OPERATOR PARAMETERS
MName Width Type Lcon File: =]
NameCfOperatorinstance 1 write| M- Help Fie: 45
SomeSortOfReadOnlyParameter 1 Read x
[1 Protected Cancel Save

(In XML, the entry Operator/Info/LibraryFile points to this file.)

7.1 High-level Simulation

7.1.1 Overview

For High-level simulation within VisualApplets the following function must be exported,

int SimulateOPNAME (va custom op sim handle simHandle)

where OPNAMIE is the name of the Custom Operator.

Visual Applets 3 62 Custom Operatos User’s Guide

BASLER’

High-level simulation must be done according to following requirements:

= Frame based simulation - On each image input port it can be queried whether

one or more frames are available. If all ports which are required for starting

simulation are able to provide a frame then the concerning output frames need

to be computed and emitted via calls of appropriate functions. For one

dimensional image data the data stream is automatically split into frames and

simulated just like2D-data.

= Bit accurate simulation — The calculation of resulting frames must be bit accurate,

i.e. the output data must be exactly equal to the data generated by the hardware

implementation.

= Keeping consistency of flow — When operator input ports are synchronous to

eachother input images must be fetched accordingly. When several outputs are

definedimages must be output simultaneously. For the simulation function this

means thatwhen a frame is output to one output link it must also output a frame

to all other output links before the simulation function is returning.

As the behavior of the operator typically depends on the set of operator parameters these

parameters may be queried via the following interface:

Nr.

Function

Description

vaSi CustomOp GetParamValue ()

Get value of operator parameter.

A number of functions are provided by VisualApplets for getting, generating and storing image

data for the Custom Operator:

Nr. | Function Description
Get image available at an Imgln
1 vaSi CustomOp GetInputImage ()
- - port.
2 vaSi CustomOp PutOutputImage () Output image to ImgOut port.
Query whether Imgln port may
3 vaSi CustomOp InputHasImage () . .
- - deliver an image.

Visual Applets 3 63

Custom Operatos User’s Guide

BASLER’

Nr. | Function Description
Query whether ImgOut port may
4 vaSi CustomOp OutputReady () .
- P_-utp 7 take an image.
5 vaSi CustomOp CreatelImage () Create new image.
6 vaSi CustomOp DeleteImage () Delete image.
Store image in local storage of
operator instance providing a
7 vaSi CustomOp StorelImage () .
- P J name whereby the image may
later be referenced.
Query number of images stored
8 vaSi CustomOp GetStoredImagesCount () L .
- - within operator instance.
9 vaSi CustomOp GetStoredImage () Get stored image by index.
Get name of stored image by
10 | vasi CustomOp GetNameOfStoredImage () index
11 | vasi CustomOp GetStoredImageByName () | Get stored image by name.
Create new image format handle
which becomes initialized by the
12 | vaSi CustomOp CreatelImageFormat () . . .
- P_ J format associated with the given
port.
Create new image format which isa
13 | vaSi CustomOp CopyImageFormat () .
- - copy of given format.
Delete image format handle
14 | vaSi CustomOp DeleteImageFormat ())
- - created earlier.

Visual Applets 3 64

Custom Operatos User’s Guide

BASLER’

For manipulating images via image handles the following functions are available:

Nr. | Function Description

1 vaSi Image GetFormat () Get image format.

2 vaSi Image SetProperty () Set property of frame (e.g. height).
3 vaSi Image GetProperty () Get property of frame.

4 vaSi Image SetPixelValue () Set pixel component value

5 vaSi Image GetPixelValue () Get pixel component value

6 vaSi Image SetLineLength () Set individual length of a line.

7 vaSi Image GetLineLength () Get length of individual line.

Image formats may be manipulated via the following functions:

Nr. | Function Description

Set image format property (e.g. maximum

1 vaSi ImageFormat SetProperty () .
- - width).

2 vaSi ImageFormat GetProperty () | Getimage format property.

The simulation function may inject an status message (i.e., error message) into the VisualApplets

simulation system using the following functions:

Nr. | Function Description

1 vaSi CreateStatusMessage () Create status message.

Set property of status message (like

2 vaSi SetStatusMessageProperty () .
- severity).

Submit the status message to the
3 vaSi SendStatusMessage ()

simulation engine.

Visual Applets 3 65 Custom Operatos User’s Guide

BASLER’

7.1.2 Communicating Data

For querying information and configuring parameters data must be exchanged through the
software interface. In order to keep the interface functions simple but providing a type save
interface an abstraction mechanism for data is implemented. Whenever data of different types
needs to be communicated a data structure called va_data is used, containing a reference to the
data and information about the underlying data type. This data structure is created by the user but
configured by dedicated functions listed below. The following table shows the data types which
are handled by this method:

VA_ENUM enum entry given as 32-Bit integer
VA_INT32 32-Bit signed integer

VA_UINT32 32-Bit unsigned integer

VA_INT64 64-Bit signed integer

VA_UINT64 64-Bit unsigned integer

VA_DOUBLE Floating-point number, double precision

VA_INT32_ARRAY

Array of 32-Bit signed integer numbers

VA_UINT32_ARRAY

Array of 32-Bit unsigned integer numbers

VA_INT64_ARRAY

Array of 64-Bit signed integer numbers

VA_UINT64_ARRAY

Array of 64-Bit unsigned integer numbers

VA_DOUBLE_ARRAY

Array of double numbers

VA_STRING

String given as const char*

Visual Applets 3

66 Custom Operatos User’s Guide

BASLER’

Configuring an earlier created va_data structure (vaData) for setting up data communication is

done via the following functions:

va data* va data enum(va data* vaData, int32 t *data)
va_data* va data int32(va data* vaData, int32 t *data)
va data* va data uint32(va data* vaData, uint32 t
data) va data va data int64 (va data* vaData, int64 t
data) va data va data uint64(va data* vaData,
uint64 t *data) va data* va data double(va data*
vaData, double *data) va data*
va data int32 array(va data* vaData, int32 t *data,
size t elementCount)
va_data* va data uint32 array (va data* vaData, uint32 t *data,
size t elementCount)
va data* va data int64 array (va data* vaData, int64 t *data,
size t elementCount)
va data* va data uint64 array (va data* vaData, uint64 t *data,
size t elementCount)
va data* va data double array (va data* vaData, double *data,
size t elementCount)
va data* va data string(va data* vaData, char data*, size t
strSize)va data* va data const string(va data* vaData, const

char **data)

For strings there are two options how strings are communicated:

1. Providingachararrayviava data string().Then queried string data will be copied to
that array.

2. Providing a pointer to const char*. Then a pointer to an internal string representation is
returned when information of type VA _STRING is queried. When you use this approach
check the livetime of the returned string.

Example Code:

The following example shows code for querying the image width.

uint32 t imgWidth;

va_ data

va_ imgWidth;

va_data double (&va imgWidth, &imgWidth) ;

vaSi Image GetProperty(imageHandle, "Width", &va imgWidth);

Visual Applets 3 67 Custom Operatos User’s Guide

After that the variable imgWidth will contain the requested information.

7.1.3 Detailed Description of Interface Functions

The following gives a detailed description of parameters and returned va

simulation interface functions.

BASLER’

lues for the specified

Function

int vasSi CustomOp GetParamValue (va custom op sim handle

simHandle, const char* paramName, va data *value)

Parameter 1 | Simulation handle provided to the operator simulation function.

Parameter 2 | Name of parameter.

Parameter 3 | Return parameter for queried value.

Description | Returns the value of the parameter with the given name.

0: Value is queried data
Return value
<0: Cannot query parameter

Function

int vaSi CustomOp GetlInputlImage (va custom op sim handle

simHandle, const char* portName, va image handle *image)

Parameter 1 | Simulation handle provided to the operator simulation function.

Parameter 2 | Name of operator port.

Parameter 3 | Return parameter for image handle.

Take an image which enters the operator at the given po

Description | function this image must either be stored by calling
vaSi_CustomOp_Storelmage() or deleted by calling

vaSi_CustomOp_Deletelmage().

handle referencing that image. Before returning from the simulation

rt and return a

0: OK
Return value

<0: Cannot get image

Visual Applets 3 68 Custom Operatos User’s Guide

BASLER’

Function

int vasSi CustomOp PutOutputImage
(va _custom op sim handle simHandle, const char*

portName, va image handle imageHandle)

Parameter 1

Simulation handle provided to the operator simulation function.

Parameter 2

Name of operator port.

Parameter 3

Image handle.

Description

Outputs image to the given port.

Return value

0 : Operation has been completed successfully

<0: Cannot output image

Function

bool vaSi CustomOp InputHasImage
(va _custom op sim handlesimHandle, const char*

portName)

Parameter 1

Simulation handle provided to the operator simulation function.

Parameter 2

Name of operator input port.

Description

Returns whether there is an input image available at the port with the given
name.

Return value

true : Image is available

false : No image available

Visual Applets 3

69

Custom Operatos User’s Guide

BASLER’

Function

bool vaSi CustomOp OutputReady (va custom op sim handle

simHandle, const char* portName)

Parameter 1

Simulation handle provided to the operator simulation function.

Parameter 2

Name of operator output port.

Description

Returns whether the output port with the given name may take an image.

Return value

true : Output ready for next image

false : Output not ready for taking image

Function

int vaSi CustomOp Createlmage (va custom op sim handle
simHandle, va image format handle format,

va_ image handle * newlImage)

Parameter 1

Simulation handle provided to the operator simulation function.

Parameter 2

Image format of the new image.

Parameter 3

Return parameter for image handle.

Description

Creates a blank image based on the format given by parameter 2. Before
returning fromthe simulation function this image must either be stored by
calling vaSi_CustomOp_Storelmage() or deleted by calling

vaSi_CustomOp_Deletelmage().

Return value

0:0K

<0 : Could not create image

Visual Applets 3

70

Custom Operatos User’s Guide

BASLER’

int vaSi CustomOp DeleteImage (va custom op sim handle

Function simHandle, va_image handle imageHandle)

Parameter 1 | Simulation handle provided to the operator simulation function.

Parameter 2 | Handle of image which shall be deleted.

Description | Deletes image referenced by given image handle.

0 : Operation has been completed successfully
Return value

<0: Error during deleting image

int vaSi CustomOp StorelImage (va custom op sim handle
Function simHandle, va image handle imageHandle, const char*

storeName)

Parameter 1 | Simulation handle provided to the operator simulation function.

Parameter 2 | Image handle.

Name as which the image shall be stored. The image may later be queried by

Parameter 3 .
this name.

Description | Storesimage in local storage of the operator simulation instance.

0 : Operation has been completed successfully

VA_SIM_CANNOT_STORE_IMAGE: Cannot create storage for

Return value| iy 50e

VA_SIM_STORE_NAME_ALREADY_USED: Name ‘storeName’ is already in

use for currentlystored image

Visual Applets 3 71 Custom Operatos User’s Guide

BASLER’

Function

int vaSi CustomOp GetStoredImagesCount
(va_custom op sim handlesimHandle, unsigned int

*count)

Parameter 1

Simulation handle provided to the operator simulation function.

Parameter 2

Return parameter for image count.

Description

Returns the number of images which are stored within the operator
simulation instance.

Return value

0: OK

<0: Can’t query information.

Function

int vaSi CustomOp GetStoredImage
(va_custom op sim handle simHandle, unsigned int index,

va image handle *retImage)

Parameter 1

Simulation handle provided to the operator simulation function.

Parameter 2

Index within the array of stored images.

Parameter 3

Return parameter for image handle.

Description

Get image which has been stored before. The image is removed from the
image storage. Before returning from the simulation function this image
must either be stored again by calling vaSi_CustomOp_Storelmage() or

deleted by calling vaSi_CustomOp_Deletelmage().

Return value

0: OK

<0 : Could not get image

Visual Applets 3

72

Custom Operatos User’s Guide

BASLER’

const char* vaSi CustomOp GetNameOfStoredImage

A (va_custom op sim handle simHandle, unsigned int index)

Parameter 1 | Simulation handle provided to the operator simulation function.

Parameter 2 | Index within the array of stored images.

Description | Returns a string of the image name.

Not NULL : Value is image name string
Return value

NULL : Could not query name

int vaSi CustomOp GetStoredImageByName
Function (va _custom op sim handlesimHandle, const char*

storeName, va image handle *retImage)

Parameter 1 | Simulation handle provided to the operator simulation function.

Parameter 2 | Name under which the image has been stored.

Parameter 3 | Return parameter for image handle.

Get image which has been stored before with the given storage name. The
image is removed from the image storage. Before returning from the
Description | simulation function this image must either be stored again by calling
vaSi_CustomOp_Storelmage() or deleted by calling

vaSi_CustomOp_Deletelmage().

0:0K
Return value

<0 : Could not get image

Visual Applets 3 73 Custom Operatos User’s Guide

BASLER’

Function

int vaSi CustomOp CreateImageFormat
(va _custom op sim handlesimHandle, const char* portName,
va image format handle

*createdFormat)

Parameter 1

Simulation handle provided to the operator simulation function.

Parameter 2

Name of operator port.

Parameter 3

Return pointer for format handle.

Description

Creates a new image format object and returns a corresponding handle. The
format is initialized by the format of the port with the given name. Before
returning from the simulation function the format must become deleted by

calling vaSi_CustomOp_DeletelmageFormat().

Return value

0:0K

<0 : Could not create format

Function

int vasSi CustomOp CopyImageFormat
(va_custom op sim handlesimHandle,
va image format handle formatHandle,

va_ image format handle *createdFormat)

Parameter 1

Simulation handle provided to the operator simulation function.

Parameter 2

Handle of format which is being copied.

Parameter 3

Return parameter for format handle.

Description

Creates a new image format object and returns a corresponding handle. The
format is initialized by the provided format. Before returning from the
simulation function the formatmust become deleted by calling

vaSi_CustomOp_DeletelmageFormat().

Return value

Not NULL : Value is format handle

NULL : Could not create format

Visual Applets 3

74

Custom Operatos User’s Guide

BASLER’

int vaSi CustomOp DeletelImageFormat
Function (va_custom op sim handlesimHandle,

va image format handle formatHandle)

Parameter 1 | Simulation handle provided to the operator simulation function.

Parameter 2 | Handle of format which is being deleted.

Description | Deletes the image format object referenced by the given format handle.

0: OK
Return value
<0 : Could not delete format

int vaSi Image GetFormat (va image handle
Function imageHandle, va image format handle
formatHandle)

Parameter 1 | Image handle.

Parameter 2 | Handle of earlier created format which will be set to format of image.

Description | Queries the format of the image referenced by the image handle.

0 : Operation has been completed successfully
Return value

<0: Cannot query format

Visual Applets 3 75 Custom Operatos User’s Guide

BASLER’

Function

int vaSi Image SetProperty (va image handle

imageHandle, constchar* propType, const va data*

propData)

Parameter 1

Image handle.

Parameter 2

String identifying the property which shall be set.

Parameter 3

Pointer to data structure which will be used for setting the new property.

Description

Set property of the image referenced by the image handle. Following

properties may be setvia this function:

“ImgWidth” : Set image width (propData has type VA_UINT32)

“ImgHeight”: Set image height (propData has type VA_UINT32)

Return value

0 : Property has been set successfully
VA_SIM_INVALID_PARAMETER : Cannot identify
propertyVA_SIM_INVALID _TYPE: Property data has
wrong format

VA_SIM_INVALID_VALUE : Property data has invalid value

Function

int vaSi Image GetProperty (va image handle

imageHandle, constchar* propType, va data*

propData)

Parameter 1

Image handle.

Parameter 2

Enum value identifying the property which shall be queried.

Parameter 3

Pointer to data structure which will be used for data communication.

Description

Queries the properties of the image referenced by the image handle.

Following propertiesare available:

“ImgWidth” : Get image width (propData has type VA_UINT32)

“ImgHeight”: Get image height (propData has type VA_UINT32)

Visual Applets 3

76

Custom Operatos User’s Guide

BASLER’

0 : Property has been queried successfully

VA_SIM_INVALID_PARAMETER : Cannot identify property
Return value
VA_SIM_INVALID_TYPE: Property data has wrong format

VA_SIM_INVALID_VALUE : Property data has invalid value

Function int vaSi Image SetLineLength (va image handle

imageHandle, unsignedint line, unsigned int length)

Parameter 1 | Image handle.

Parameter 2 | Line number.

Parameter 3 | Line length.

Sets the length of the referenced line to an individual value which may differ
Description | to the overallimage width (not exceeding the maximum image width defined

by the image format).

0 : Operation has been completed successfully
Return value

<0: Cannot set line length to the given value

. int vaSi Image GetLineLength (va image handle
Function - - - -

imageHandle, unsignedint line, unsigned int *length)

Parameter 1 | Image handle.

Parameter 2 | Line number.

Parameter 3 | Return parameter for line length.

Description | Returns the length of the referenced line.

0: OK
Return value

<0: Cannot query line length

Visual Applets 3 77 Custom Operatos User’s Guide

BASLER’

Function

int vaSi Image SetPixelValue (va image handle
imageHandle, uint64 timagePos, unsigned int compIndex,

int64 t value)

Parameter 1

Image handle.

Parameter 2

Position within the frame.

Parameter 3

Component index.

Parameter 4

Pixel component value.

Description

Sets the corresponding pixel component to the given value.

Return value

0 : Operation has been completed successfully

<0: Error setting the pixel component value

Function

int vaSi_Image_ GetPixelValue (va_image handle
imageHandle, uint64_timagePos, unsigned int compIndex,

int64_t *value)

Parameter 1

Image handle.

Parameter 2

Position within the frame.

Parameter 3

Component index.

Parameter 4

Return parameter for pixel component value

Description

Returns the corresponding pixel component value.

Return value

0 : Operation has been completed successfully

<0: Error getting the pixel component value

Visual Applets 3

78

Custom Operatos User’s Guide

BASLER’

Function int vaSi ImageFormat SetProperty (va image format handle
formatHandle, const char* propType, const va data*
propData)

Parameter 1 | Image format handle.

Parameter 2 | Enum value identifying the property which shall be set.

Parameter 3 | Pointer to data structure which holds the new property.

Description | Sets properties of the image format referenced by the handle. Following

properties may beset via this function:

“Protocol”: Set image protocol where *propData has the type VA_ENUM

and is set to oneof the following values:

VALT_IMAGE
2D
VALT_LINE1D

“ColorFormat”: Set image protocol where *propData has the type

VA_ENUM and is set toone of the following values:

VAF_GRA
Y
VAF_CoL
OR

“ColorFlavor”: Set image protocol where *propData has the type VA_ENUM

and is set toone of the following values:

FL_NON

FL_RGB

FL_HSI

Visual Applets 3 79 Custom Operatos User’s Guide

BASLER’

FL_YUV
FL_LAB

FL_XYZ

“Parallelism”: Set parallelism (type VA_INT32)

“ComponentCount”: Set number of pixel components (type VA_INT32)

“ComponentWidth”: Set pixel component width (type VA_INT32)

“Arithmetic”: Set pixel component arithmetic where *propData has the type

VA_ENUM andis set to one of the following values:

UNSIGNE

DSIGNED

“MaxImgHeight”: Set max. image height (type VA _INT32)

“MaxImgWidth”: Set max. image width (type VA_INT32)

0 : Property has been set successfully
VA_SIM_INVALID_PARAMETER : Cannot identify
Return value| propertyVA_SIM_INVALID_TYPE: Property data has

wrong format

VA SIM_INVALID VALUE : Property data has invalid value

Visual Applets 3 80 Custom Operatos User’s Guide

BASLER’

int vaSi ImageFormat GetProperty (va image format handle
Function formatHandle, VAImageFormatProperty propType, va data*
propData)

Parameter 1 | Image format handle.

Parameter 2 | Enum value identifying the property which shall be queried.

Parameter 3 | Pointer to data structure which will be overwritten by the queried property.

Queries properties of the image format referenced by the handle. The
Description | properties whichmay be queried are identical to the ones which can be set

through the function vaSi_ImageFormat_SetProperty().

0 : Property has been queried successfully
Return value| VA_SIM_INVALID_PARAMETER : Cannot identify property

VA_SIM_INVALID_TYPE: Property data has wrong format

. int vaSi CreateStatusMessage (va custom op sim handle
Function - - — ==

simHandle, va_ status handle *newMessage)

Parameter 1 | Simulation handle.

Parameter 2
Return parameter for created error message.

Description | Create a status message which may be submitted to the simulation engine.

0:0K
Return value

<0: Can’t create message

Visual Applets 3 81 Custom Operatos User’s Guide

BASLER’

Function

int vaSi SetStatusMessageProperty

(va_custom op sim handle simHandle, va status handle

message, const char* propName, constva data* propValue)

Parameter 1

Simulation handle.

Parameter 2

Status message handle.

Parameter 3

Name of property which shall be set.

Parameter 4

New property value

Alter status message property. Following properties may be set via this

function:“Code”: Set error code (type VA_INT32)

“Severity”: Set severity level where the data (type VA_ENUM) must be one of

the followingvalues:

Description
VA_INFO
VA_WARNING
VA_ERROR
“Description”: Set string description of status (type VA_STRING)
int vaSi SendStatusMessage (va custom op sim handle
Function

simHandle, va status handle message)

Parameter 1

Simulation handle.

Parameter 2

Handle of status message which shall be submitted.

Description

Submitted status message to the simulation engine.

Return value

0:0K

<0: Can’t submit message

Visual Applets 3

82

Custom Operatos User’s Guide

BASLER’

7.2 Throughput Analysis

For throughput analysis within VisualApplets the following function must be exported:

int AnalyzeThroughputOfOPNAME (va custom op sim handle simHandle,
const char* inPort, const char* outPort,
double* throughputRatio)

where OPNAME is the name of the Custom Operator. The function must return a factor
throughputRatio which is the ratio of data rate between input inPort and output outPort of
the operator. When there is no direct relation between inPort and outPort the function must

return -1 otherwise 0 is returned.

Visual Applets 3 83 Custom Operatos User’s Guide

8

BASLER’

Creating Custom Operator Documentation

Documentation of the operator should be provided as an HTML file. When available, all files which

make up the documentation need to be specified under the General tab / HTML Help Files:

@ Edit Custom Operator ? X
| MyFirstOperator |
General Inputs Qutputs GPIO Memory Registers Cores
MyFirstOperator MName: | MyFirstOperator |
ImglnT: A @ImgOutType_X_
< y':;l ;‘i |.GPO_X Vendor: |NameDfMyCompan‘f |
- @GPO_Y
Simulation Library: | | =
'OPERATOR PARAMETERS
Name Width Type | _[con File: | =
MNameOfQperatorinstance 1 wite || T Help Fle: E;b
x

SomeSortOfReadOnlyParameter 1 Read

[Protected

Cancel Save

The first file that is specified is interpreted to be the starting point of the operator’s

documentation. The naming convention for this file is: <NameOfCustomOperator>.htm.

Make sure you provide a CSS file. Make sure you also provide all related image files.

(In XML, the entry Operator/Info/HtmIHelpFile points to these files.)

You can use the operator template provided in the VisualApplets install directory in subdirectory

Examples/CustomLibrary/OperatorTemplate.

Visual Applets 3

84

Custom Operatos User’s Guide

BASLER’

9 Completing the Custom Operator

When you have wrapped your HDL code so that its interface matches the generated black box, you

need to proceed some last steps for completing your custom operator:

1. Create a netlist out of your implementation.

Set Add 10 Buffer = NO

When creating the netlist, make sure that your synthesis tool doesn’t automatically add 10

@ buffers. In case you use XST for netlist synthesis you set

Add IO Buffer = NO

Otherwise, the resulting NGC file will cause errors during the VisualApplets build flow.

Warnings During Netlist Generation

When generating the net list, warnings may be output concerning unused IO Ports of the
custom operator interface. Unused |0 Ports are all ports that were generated according to
your operator definition, but are not connected with your IP core. You may ignore these
warnings.

Examples of this behavior are all custom operator examples you find in the Examples directory

of your VisualApplets installation:

\Examples\CustomLibrary

2. If required, also define a constraints file (*.ucf format if you use Xilinx ISE, *.xdc format if

you use Xilinx Vivado).
3. Optionally, set up the operator’s software interface as described in section 7.
4. Optionally, create the operator documentation as described in section 8.
Now, you need to complete the operator definition in VisualApplets.
To do so, proceed as follows.
Required steps:

Visual Applets 3 85 Custom Operatos User’s Guide

1. Go to the Core tab.

@ Edit Custom Operator

BASLER’

MyFirstOperator
General Inputs Outputs GPIO Memory Registers Cores
MyFirstOperator Core Netlists
ImginType_A_@&-—— S/Ma0uIType X Cored
GPI_A® ~
L Lo Netist File: | =
GPI_B@ :
- ecro_z Delete
Constraints File: | | =
OPERATOR PARAMETERS Suppor ted Devices: | |
Name Width Type Supported Tool Flow: [] ISE Min. version [vivado Min. version
MameQfCOperatorinstance 1 Write
SomeSortOfReadOnlyParameter 1 Read Estimated Logic Resource Consumption
LUT: o]
Flip Flops: 0
Block RAM: 0
Embedded ALL: 0
[Protected Cancel Save

2. Specify the netlist file you generated.

3. Specify the constraints file if you defined constraints.

4. Specify the supported devices: The device name is the name of the FPGA type of the target

platform. Please use exactly the same spelling as provided in the project info box of

VisualApplets. If several FPGA types are supported, use a space separated list of names.

Project Info 5 X
Info Value s
4 Project
Name RGBWhiteBalancing
Creation Date Fr12. Apr08:53:05 2013
Last Modified Do 18. Apr11:40:19 2013
Version =
[» Description
Hardware Platform microEnable IV VD4-CL/PoCL
FPGA Device
Target Runtime Windows/AMDG64 E
Design Rules Check Level 1
Hardware Applet
4 Resources
FPGA Clock 62.5

If a design uses the custom operator, but the FPGA on the target platform is not in this list,

the DRC will report an error that the operator is not supported by the target platform.

5. Specify the supported Xilinx Tool(s). You can check the boxes for both ISE and Vivado.

Netlists generated with ISE are usually also compatible with the Vivado build flow but you

should check whether this is the case for your operator implementation. You need to

Visual Applets 3

86 Custom Operatos User’s Guide

BASLER’

define the minimal version number of the tool which supports the given netlist. Typically
this would be the version which you used for creating the net list.

If a design uses the custom operator, but the specified tools are not used for building the
design, the DRC will report an error that the operator is not supported by the target

platform.

Defining Multiple Cores

You can define multiple cores for the same custom operator. This will allow to use device and
tool specific implementations of the custom operator so for different target platforms the
appropriate implementation is chosen for building an applet.

Optional steps:

6. Optionally, enter the consumption of logic resources by the operator. Simply enter the

values estimated by the Xilinx tools during generation of netlist.

7. Under the General tab, specify the path to your simulation library (the custom operator’s

software interface).

8. Under the General tab, specify the path to the icon file. This is the file that contains the

icon that will be used when your custom operator is displayed in VisualApplets.

9. Under the General tab, specify all files that make up your custom operator documentation.

Make sure you also provide a CSS file and all related image files.

10. If you want to protect your operator design: In the left bottom corner, activate the option
“Protected”. In the dialog that opens:
a) Make sure protection mode Password is activated.
b) Enter your password.
c) Click OK.

;\ Protect custorn library element >

Protection Mode

sswnrd () One Way

Password must contain at least 6 characters.,

Password: || | Show Password

QK Cancel

Visual Applets 3 87 Custom Operatos User’s Guide

BASLER’

You can always protect your custom operator design also at a later point of time,

using the context menu of the custom library element.

Protecting Options

After protection has been enabled, the custom operator is made a

“black box”.There are two ways to protect a custom operator design:

Protection via password: The custom operator design can

afterwards be opened and edited via password. Users that do not

have the password will notbe able to see any details of the custom

operator (black box).

A = [rreversible protection: If you select protection mode One-Way,
the customoperator is made a black box forever and cannot be re-

opened, not even byyourself.

"One-Way" protection is irreversible: If you select protection mode One Way (instead of
Password), the user library element can never be re-opened, not even by yourself. If you plan
to enhance the element at a later point of time, make sure you select protection mode
Password instead. Alternatively, you can save a copy of the element (as a hierarchical box or a

non-protected operator) before enabling this protection mode.

11. Click Save.

Now, your new custom operator is ready for being used in designs.

Visual Applets 3 88 Custom Operatos User’s Guide

BASLER’

10 Using New Custom Operators

10.1 Distributing the Custom Library or the Individual Custom Operator

A custom library with all contained operators is stored as one single <LibaryName>.vl file.

<LibaryName> is the name of the custom library.

This file can be distributed and directly applied in VisualApplets. It simply needs to be copied into
the Custom Library directory which is specified in the VisualApplets settings (Settings -> System

Settings -> Paths -> Custom Libraries).

1. Copy the new <LibaryName>.vl file to the Custom Library directory of your VisualApplets

installation.

[Seﬁings | Help

" Systermn Settings
H

[Build Settings

System Settings 3]

Category

Path Settings

Program Configuration File

. L@ Paths
ﬁ Simulation C:\siliconSoftware \VisualApplets_3.0_N_0208\\Visualapplets.ini

“lapes Design Temporary Files

Path for temporary files

== .

E e C:\sers'\teuber\AppDataLocal Temp

g Global Build Use system's tempaorary directory
B User Libraries

-Lw.'-' Common Path for storage of user libraries

C:\SiliconSoftware \WisualApplets_3.0_N_0208YJserLibrary
Custom Libraries

Path for storage of custom libraries

C:\SiliconSoftware WisualApplets_3.0_N_0208\CustomLibrary

VisualApplets Designs
Path for VisualApplets designs (*.va)

C:\siliconSoftware \WisualApplets_3.0_N_0208\Designs

2. Re-scan the custom library in the VisualApplets GUI: Right-click on the library name and

from the sub menu select Rescan Custom Library Directory.

Visual Applets 3 89 Custom Operatos User’s Guide

BASLER’

Custom Library

Filter:
Marne
. MyCustornLibrary
4 | MySecondCustomlLibrary
|MyFirstOperator ——]
f} Edit
. YetAnotherCustg -
'ﬂ Delete
f;.:: Protect / Unprotect
Export »
%% Create New Custom Library
é Rescan Customn Library Directory

In the VisualApplets examples directory, you find a ready-to-use library called CustomLibrary.vl

which contains all example operators.

10.2 Update from Custom Library

When you make changes to a custom operator, these changes are not reflected in the designs
where you already use the custom operator. Therefore, you need to update the custom operator

instances in the designs.
1. Right-click on the operator.

2. From the sub-menu, select Update from Custom Library or Quick Update from Custom

Library.
MyFirstOperator
@
E o Cut Ctrl+X
® s Copy
Mol G Delete Del
@ Help
Rename F2
Resources
Tn Properties
é Update from Custom Library
é Quick Update from Custom Libra.y

The update mechanism for Custom Libraries is exactly the same as for User Libraries.

Visual Applets 3 90 Custom Operatos User’s Guide

BASLER’

10.3 Importing and Exporting Individual Custom Operators

You can import and export individual custom operators by importing/exporting the XML definition

of the operator.

To import a custom operator:

1. Right-click on the custom library where you want to import the custom operator to.

2. From the sub-menu, select Import Operator -> From XML.

Custom Library
Filter:

Mame

. MyCustornLibrary

] | . MySecondCustor-"-
MyFirstOperator & Create Operator
. VYetAnotherCusto ﬂ Delete

Import Operator

Create Mew Custom Library

& w

Rescan Custom Library Directory

From XML
Frorn Library

3. Specify the path to the custom operator’s XML definition:

~ Open Custom Operator Descriptor File

=

Organisieren * Neuer Ordner

-

MName
4 Bibliotheken

. sim
|| Bilder

1) VHDL

mv| . « SiliconSoftware » VisualApplets 3.0_N_0208 » Examples » Customlibrary » DirectMemoryAccess » - |4,|| DirectMemoryAccess durchsuc... P|

= 0 @
Anderungsdatum Typ Grafke

02.08.2016 10:23 Dateiordner
02.08.2016 10:23 Dateiordner

@ Dokumente ?
| | DirectMemoryAccessxml

26.07.2016 13:38 XML-Datei 3KB

ds Musik

Qﬂ New Library
gﬂ Subversion
E Videos i

m

L Computer
& System (Ci)
‘3_'}' DVD-RW-Laufwerk (D:) Audic CD =

Dateiname: DirectMemoryfccessxml

- lee!ator Descriptor Files (*xml v]

| Offnen vl ’ Abbrechen I
v

4. Click Open.

Visual Applets 3 91

Custom Operatos User’s Guide

Immediately, the Edit Custom Operator dialog opens:

BASLER’

é Edit Custom Operator

DirectMemoryAccess

DirectMemoryAccess

19
waddref & 199
RAddr@ MEM
oFl
RFlag@ =

OPERATOR PARAMETERS

General | Inputs I Outputs | GPIO I Memary

Registers I Cores |

MName: DirectMemoryAccess
vendor: Sisa
Version: 1.0

Simulation Library: sim\Win64\DirectMemoryAccess.dll

e Width Type Icon File: DirectMemoryAccess.png
HTML Help File: DirectMemoryhccess.html
siso.Css
~
[Protected Cancel] [Save]
5. Click Save.

After saving, the imported operator is directly available in the custom library:

Custom Library
Filter:

Mame

. MyCusternLibrary
4 | MySecondCustomLibrary
. DirectMemoryAccess
MyFirstOperator

. YetfnotherCustomLibrary

Visual Applets 3

92

Custom Operatos User’s Guide

BASLER’

11 Operator Template and Examples

11.1 Examples

In the install directory, you find three completed custom operators which you can use as

reference.
You find the examples here:

\Examples\CustomLibrary

11.2 Custom Operator Template

In the install directory, you find a custom operator template which you can use for defining your

custom operators.
\Examples\CustomLibrary To use the custom operator
template:
1. Right-click on the custom library where you want to create the new custom operator in.
2. From the sub-menu, select Import Operator -> From XML.

Custom Library
Filter:

Marne
. MyCustornLibrary

- | . MySecondCustor'*
MyFirstOperator & Create Operator
. VYetAnotherCusto ﬂ Delete

Import Operator g From XML

Create Mew Custom Library From Library

& w

Rescan Custom Library Directory

Visual Applets 3 93 Custom Operatos User’s Guide

BASLER’

3. Specify the path to the operator template:

~ Open Custom Operator Descriptor File
%v| <« SiliconSoftware » VisualApplets 3.0_N_0208 » Examples » Customlibrary » OperatorTemplate - | 4 | | OperatorTemplate durchsuchen 0 |
Organisieren « MNeuer Ordner =+ [@

- Bibliotheken =y
[E=] Bilder
@ Dokumente
&) Musik
=) Mew Library
=]l Subversion
B videos

OperatorTemplat
exml

m |

Lol Computer
ﬂ—? System (C:)
%_ih DVD-RW-Laufwerk (I:) Audio CD

Dateiname: OperatorTemplatexml - ’Operator Descriptor Files (*xml v]

[Offnen |v] [Abbrechen]

4. Click Open.

Immediately, the Edit Custom Operator dialog opens:

Q/‘ Edit Customn Operator

OperatorTemplate

General | Inputs | Outputs | GPIO | Memory I Registers | Cores |

MName: OperatorTemplate]
OperatorTemplate
IC’ FOO Viendor: M/A
iersion: 10
Simulation Library:
OPERATOR PARAMETERS
Mame Width Type Tcon File: OperatorTemplate.png
DummyParameter 8 Write| | FTMLHelp File: OperatorTemplate. html
siso.css
A
[Protected [Cancel] [Save

5. Give a name to your new custom operator and proceed as described in section 3.

Visual Applets 3 94 Custom Operatos User’s Guide

BASLER’

12 Appendix

12.1 XML Format for Custom Operator Specification

The definition of a custom operator is stored in XML format. A concerning XML file can be
exported from the operator library or an operator can be imported using an earlier exported XML

file.

In the following, we describe the required parameters where the parameter name is related to an
XML tag with the same name. A parameter like ImgInInfo will translate to an XML entry like:
<ImgInInfo> ImgInPortNames </ImgInInfo> where ImgInPortNames is the value whichin
this case would be a sequence of port names. The parameters are hierarchically ordered. In the
following tables, lines with gray background will notify the hierarchy position where the

parameters are expected.

Simple parameter values can be of following types:

= Choice: the allowed values are YES or NO
= String: an ASCII string without whitespace
= Integer

= Floating-point

Some parameters are composed as a structure of values where arrays or records are possible
elements for structuring. Arrays are entered by a list of values separated by white space where the
values themselves may be structured. Records are entered by a scheme like follows where
RecordName is the record identifier, attrX are the identifiers for the record entries and
attrXvalue are the values:

<RecordName attrl="attrlValue” .. attrN="attrNvValue”/>

An example would be providing a record called port with entries for name and width:

<port name="flag” width="4"/>

The root tag of the XML format is “Operator” with an attribute “name” where the Custom

Operator name should be provided:

<Operator name="XYZ">

</Operator>

Visual Applets 3 95 Custom Operatos User’s Guide

BASLER’

Comply with VHDL Naming Conventions

When defining the operator name in the VA GUI, make sure you conform to the VHDL naming

conventions.

@ VHDL valid names are defined as follows:

“A valid name for a port, signal, variable, entity name, architecture body, or similar object
consists of a letter followed by any number of letters or numbers, without space. A valid name
is also called a named identifier. VHDL is not case sensitive. However, an underscore may be
used within a name, but may not begin or end the name. Two consecutive underscores are

not permitted.”

Parameter Name Type Description

Operator/Info

Vendor String Name of Vendor.

Version number of the operator. The value can be
Version String freely chosen and is intended for version

identification by the user.

List of core netlists for the operator. The first string
must be Core0 and must always be there. If more
Cores Array of String | than one core is available the naming convention
for them is Core<N> where <N> is a integer

number incremented with every core.

Quoted name of file containing software library
LibraryFile String (dynamic link library) containing the high-level

simulation model for the operator.

Visual Applets 3 96 Custom Operatos User’s Guide

BASLER’

Parameter Name Type Description

IconFile String Quoted name of file containing the operator icon.

List of quoted file names which contain help
HtmIHelpFiles Array of String | content (html + images). The first file is considered
as the main HTML file.

Operator/IO

List of names of later defined info structures

Reglninfo Array of String (Operator/Regln) describing write register ports.

List of names of later defined info structures

R Inf A f Stri
egOutinfo rray of String (Operator/RegOut) describing read register ports.

String defining whether the inputs at the Imgin

ImgInSyncMode String ports are synchronous or asynchronous to each

other. This string may either be “Sync” or “Async”.

ImglIninfo Array of String | List of names of later defined info structures
(Operator/Imgln) describing the properties of the
image input ports. Several list entries may refer to
the same structure which then means that several
ports of the same kind of image input interface are

available.

ImgOutinfo Array of String | List of names of later defined info structures
(Operator/ImgOut) describing the properties of the
image output ports. Several list entries may refer
to the same structure which then means that
several ports of the same kind of image output

interface are available.

GPIn Array of String | List of pin names for general purpose signal inputs.

Visual Applets 3 97 Custom Operatos User’s Guide

BASLER’

Parameter Name Type Description

GPOut Array of String | List of pin names for general purpose signal
outputs.

Meminfo Array of String | List of names of later defined info structures

(Operator/Mem) describing the properties of the
memory interface ports. Several list entries may
refer to the same structure which then means that
several ports of the same kind of memory interface

are available.

Operator/Properties

NrLut Integer Number of FPGA LUT elements consumed by the
operator

NrRegs Integer Number of FPGA registers consumed by the
operator

NrBlockRam Integer Number of block ram elements consumed by the
operator

NrEmbeddedMult Integer Number of embedded multipliers consumed by the
operator

Image input port specification is done by following syntax within the configuration file:

<ImgIn name="IMG IN IDENTIFIER”> Parameters </ImgIn>;

Here IMG_IN_IDENTIFIER is one of the image input port names which have been provided in the
above parameter Operator/IO/Imgininfo. The content Parameters is specifying the properties of the

image interface port:

Visual Applets 3 98 Custom Operatos User’s Guide

BASLER’

Parameter name Type Description

Operator/Imgin

Width Integer Width of the image data port

FIFODepth Integer Depth of the buffer FIFO for input data which
at least needs to be provided by the VA core.
The value must be a power of two minus 1
between 15 and 1023.

Formats Array of List of image format records ImgFormat which
Record are supported by the port. For the naming

scheme of image formats see below.

The image format records have the following structure:

<ImgFormat name="FORMAT” maxWidth="XI1"
maxHeight="Y1”alias="NAME1" />
The entry FORMAT is a String value for an image format coded by the below discussed naming
scheme for image formats. The attributes maxWidth and maxHeight are optional and fix the limits
of image size. If they are not present, the image size constraints can be freely chosen by the user
within VisualApplets later on. The attribute alias is optional as well and, if present, defines the

name under which the format will be displayed in the GUI.

Image output port specification is done by following syntax within the configuration file:

<ImgOut name="IMG OUT IDENTIFIER”> Parameters </ImgOut>;

Here IMG_OUT_IDENTIFIER is one of the image output port names which have been provided in
the above parameter Operator/IO/ImgOutinfo. The content Parameters is specifying the properties of

the image interface port:

Visual Applets 3 99 Custom Operatos User’s Guide

BASLER’

Parameter Name Type Description

Operator/ImgOut

Width Integer Width of the image data port

FIFODepth Integer Depth of the buffer FIFO for output data which at
least needs to be provided by the VA core. The

value must be a power of two minus 1 between 15

and 1023.
Formats Array of List of image format records ImgFormat which are
Record supported by the port. For the naming scheme of

image formats see below.

Image formats are coded by the following naming scheme:

{BaseFormat} {BitsPerPixel}x{Parallelism}

Optionally there can be suffixes for image dimension and the notification of signed component

data:

{BaseFormat} {BitsPerPixel}x{Parallelism}x{Dimension} {Sign}

The meaning of the dimension is as follows:

= Dimension = 2 — a two-dimensional image means that the image is structured
bothby end-of-line and end-of-frame markers.
= Dimension =1 — a one-dimensional image means that there are no end-of-frame

markers which divide the incoming lines into frames.

When no dimension is specified a value of two is assumed. The suffix {Sign} can be s for signed
pixel components or u for unsigned values where the default value is u when no such suffix is

provided. Supported color formats are rgb, yuv, hsi, lab and xyz.
Examples are:

= gray8x4 — gray format with 8-bit pixel and parallelism 4
= rgh24x2 —rgb color format with 3x8-bit pixel and parallelism 2

Visual Applets 3 100 Custom Operatos User’s Guide

BASLER’

= grayl6xl — gray format with 16-bit pixel, only single pixel in a data word
= gray8x4x1 — one dimensional gray image with 8-bit per pixel and parallelism 4
= grayl6xls —gray image with signed 16-bit components, only single pixel in a data

word

Register input port specification is done by following syntax within the configuration file:

<RegIn name="REG IN IDENTIFIER”> Parameters </RegIn>;

Here REG_IN_IDENTIFIER is one of the register input port names which have been provided in the
above parameter Operator/IO/Regininfo. The content Parameters is specifying the properties of the

register interface port:

Parameter Name Type Description

Operator/Reglin

Width Integer Width of the register port

Register output port specification is done by following syntax within the configuration file:

<RegOut name="REG OUT IDENTIFIER”> Parameters </RegOut>;

Here REG_OUT_IDENTIFIER is one of the register output port names which have been provided in
the above parameter Operator/IO/RegOutinfo. The content Parameters is specifying the properties of

the register interface port:

Parameter name Type Description
Operator/RegOut
Width Integer Width of the register port

Memory interface specification is done by sections with following syntax within the configuration

file:

<Mem name="MEM IDENTIFIER”> Parameters </MEM>

Visual Applets 3 101 Custom Operatos User’s Guide

BASLER’

Here MEM_IDENTIFIER is one of the memory port names which have been provided in the above
described parameter Operator/IO/Meminfo. The content Parameters is specifying the properties of

the memory interface:

Parameter name Type Description
Operator/Mem
DataWidth Integer Data width
AddrWidth Integer Address width
WrFlagWidth Integer Width of flag for marking write accesses. This

parameter must be >= 1.

RdFlagWidth Integer Width of flag for marking read accesses. This
parameter must be >= 8.

WrCntWidth Integer Width of port for communicating the number

of available write commands

RdCntWidth Integer Width of port for communicating the number

of available read commands

SyncMode String This parameter signals the relation of the
memory interface clock and the design clock.

Following values are possible:

“SyncToDesignClk” — memory interface ports

are synchronous to iDesignClk.

“SyncToDesignClk2x” — memory interface

ports are synchronous to iDesignClk2x.

Specification of IP core netlists is done by sections with following syntax within the configuration

file:

<Core name="CORE_IDENTIFIER”> Parameters </Core>

Visual Applets 3 102 Custom Operatos User’s Guide

BASLER’

Here Core_IDENTIFIER is one of the core names which have been provided in the above
described parameter Operator/Cores. The content Parameters is specifying the properties of the IP

core:

Parameter name Type Description

Operator/Core

Devices Array of List of FPGA device names which are
String supported by the core
(Example: “XC3S1600E XC354000”).

NetlistFile String Quoted UTF-8 encoded file name for the net
list.

ConstraintsFile String Quoted UTF-8 encoded file name for an

optional constraints file.

MinVersionlISE String Minimum version number of ISE tool flow
which can use the given netlist (Example:
“14.6” for ISE 14.6). If ISE is not supported this

string is empty.

MinVersion String Minimum version number of Vivado tool flow
which can use the given netlist (Example:
“2014.4” for Vivado 2014.4). If Vivado is not
supported this string is empty.

Visual Applets 3 103 Custom Operatos User’s Guide

Contact Details

Europe, Middle East, Africa

Basler AG
Konrad-Zuse-Ring 28
68163 Mannheim
Germany

Tel.: +49 (0) 621 789507 0
Fax: +49 (0) 621 789507 10

support.europe@baslerweb.com

The Americas

Basler Inc.

855 Springdale Drive, Suite 203
Exton, PA 19341

USA

Tel. +1 610 280 0171
Fax +1 610 280 7608

support.usa@baslerweb.com

BASLER’

Asia-Pacific

Basler Asia Pte. Ltd.

35 Marsiling Industrial Estate Road
3

#05-06

Singapore 739257

Tel. +65 6367 1355
Fax +65 6367 1255

support.asia@baslerweb.com

https://www.baslerweb.com/en/sales-support/support-contact/

Disclaimer

While every precaution has been taken in the preparation of this manual, Basler AG assumes no

responsibility for errors or omissions. Basler AG reserves the right to change the specification of

the product described within this manual and the manual itself at any time without notice and

without obligation of Basler AG to notify any person of suchrevisions or changes.

Trademarks

All trademarks and registered trademarks are the property of their respective owners.

Copyright Note

© Copyright 2021 Basler AG. All rights reserved. This document may not in whole or in part, be

reproduced, transmitted, transcribed, stored in any electronic medium or machine readable

form, or translated into any language or computer language without the prior written consent of

Basler AG.

Visual Applets 3

104 Custom Operatos User’s Guide

mailto:support.europe@baslerweb.com
mailto:support.usa@baslerweb.com
mailto:support.asia@baslerweb.com
https://www.baslerweb.com/en/sales-support/support-contact/

	1 Introduction
	1.1 Workflow
	1.2 VisualApplets Custom Operator Functionality
	1.3 Operator Types
	1.4 Synchronous and Asynchronous Operator Ports

	2 Interface Architecture
	2.1 Clock Interface
	2.2 Reset and Enable
	2.3 Register Interface
	2.4 Interfaces for Image Data
	2.4.1 Image Protocols
	2.4.2 Image Input Ports
	2.4.3 Image Output Ports

	2.5 General purpose I/O
	2.6 Memory Interface

	3 Defining an Individual Custom Operator via GUI
	3.1 Creating a New Custom Library
	3.2 Creating a New Custom Operator
	3.3 Defining Basic Information about Custom Operator
	3.4 Defining the Image Input Ports
	3.5 Defining the GPIO Ports
	3.6 Defining the Image Output Ports
	3.7 Defining the Memory Ports
	3.8 Defining the Registers of the Custom Operator

	4 Generation of VHDL Black Box and Test Bench
	5 Operator Interface Ports
	5.1 Clock System, Reset and Enable
	5.2 Parameter Interface
	5.3 Image Communication Interfaces
	5.3.1 Interfaces of Type ImgIn
	5.3.2 Interfaces of Type ImgOut

	5.4 Memory Interfaces
	5.5 General Purpose I/O pins

	6 VHDL Simulation and Verification
	6.1 Simulation Framework
	6.2 Emulation of Register Interface
	6.3 Emulation of ImgIn Interface
	6.4 Emulation of ImgOut Interface
	6.5 Emulation of Memory Communication
	6.6 GPIO Emulation

	7 Defining the Custom Operator’s Software Interface
	7.1 High-level Simulation
	7.1.1 Overview
	7.1.2 Communicating Data
	7.1.3 Detailed Description of Interface Functions

	7.2 Throughput Analysis

	8 Creating Custom Operator Documentation
	9 Completing the Custom Operator
	Protecting Options
	10 Using New Custom Operators
	10.1 Distributing the Custom Library or the Individual Custom Operator
	10.2 Update from Custom Library
	10.3 Importing and Exporting Individual Custom Operators

	11 Operator Template and Examples
	11.1 Examples
	11.2 Custom Operator Template

	12 Appendix
	12.1 XML Format for Custom Operator Specification

	Contact Details
	Disclaimer

