

Visual Applets 3

Creating Custom Operators and
Custom Libraries

Concept Description and User Guide

2

Visual Applets 3 Custom Operatos User’s Guide

Imprint

Basler AG
Konrad-Zuse-Ring 28
68163 Mannheim, Germany
Tel.: +49 (0) 621 789507 0
Fax: +49 (0) 621 789507 10

© 2021 Basler AG. All rights reserved.

Document Version: 2.1
Document Language: en (US)

Last Change: June 2021

3

Visual Applets 3 Custom Operatos User’s Guide

Contents
1 Introduction ... 6

1.1 Workflow ... 6

1.2 VisualApplets Custom Operator Functionality .. 8

1.3 Operator Types .. 8

1.4 Synchronous and Asynchronous Operator Ports .. 9

2 Interface Architecture .. 10

2.1 Clock Interface ... 11

2.2 Reset and Enable ... 12

2.3 Register Interface .. 14

2.4 Interfaces for Image Data .. 15

2.4.1 Image Protocols ... 15

2.4.2 Image Input Ports ... 17

2.4.3 Image Output Ports .. 18

2.5 General purpose I/O .. 19

2.6 Memory Interface .. 20

3 Defining an Individual Custom Operator via GUI ... 21

3.1 Creating a New Custom Library ... 21

3.2 Creating a New Custom Operator ... 24

3.3 Defining Basic Information about Custom Operator ... 27

3.4 Defining the Image Input Ports ... 28

3.5 Defining the GPIO Ports ... 35

3.6 Defining the Image Output Ports .. 36

3.7 Defining the Memory Ports ... 42

3.8 Defining the Registers of the Custom Operator .. 43

4 Generation of VHDL Black Box and Test Bench .. 45

5 Operator Interface Ports .. 47

5.1 Clock System, Reset and Enable .. 47

4

Visual Applets 3 Custom Operatos User’s Guide

5.2 Parameter Interface .. 47

5.3 Image Communication Interfaces ... 48

5.3.1 Interfaces of Type ImgIn .. 48

5.3.2 Interfaces of Type ImgOut .. 50

5.4 Memory Interfaces .. 52

5.5 General Purpose I/O pins .. 54

6 VHDL Simulation and Verification .. 55

6.1 Simulation Framework .. 55

6.2 Emulation of Register Interface ... 56

6.3 Emulation of ImgIn Interface ... 58

6.4 Emulation of ImgOut Interface .. 59

6.5 Emulation of Memory Communication ... 60

6.6 GPIO Emulation ... 60

7 Defining the Custom Operator’s Software Interface .. 62

7.1 High-level Simulation ... 62

7.1.1 Overview .. 62

7.1.2 Communicating Data .. 66

7.1.3 Detailed Description of Interface Functions .. 68

7.2 Throughput Analysis .. 83

8 Creating Custom Operator Documentation ... 84

9 Completing the Custom Operator .. 85

Protecting Options ... 88

10 Using New Custom Operators .. 89

10.1 Distributing the Custom Library or the Individual Custom Operator 89

10.2 Update from Custom Library ... 90

10.3 Importing and Exporting Individual Custom Operators .. 91

11 Operator Template and Examples .. 93

11.1 Examples .. 93

5

Visual Applets 3 Custom Operatos User’s Guide

11.2 Custom Operator Template ... 93

12 Appendix .. 95

12.1 XML Format for Custom Operator Specification ... 95

Contact Details ... 104

Disclaimer ... 104

6

Visual Applets 3 Custom Operatos User’s Guide

1 Introduction

With the VisualApplets 3 extension Expert, you have the possibility to convert image processing

modules you have designed in VHDL into VisualApplets operators.

You incorporate your modules as IP cores into VisualApplets. Each IP core builds one operator.

After implementation, these operators work like built-in VisualApplets operators. Operators

implemented in such a way are called Custom Operators.

To make your custom operators available on the VisualApplets GUI, you also need to define one or

more custom libraries that contain the custom operator(s.) Each custom operator needs to be part

of one specific custom library.

1.1 Workflow

You add a new Custom Operator to VisualApplets in just a few steps. You can complete the whole

work flow by your own:

1. Specify the custom operator’s main properties and its interface directly on the VA GUI
(operator name, operator version, number and properties of required image in, image
out, memory ports, etc.).

2. Based on your input of step 1, let VisualApplets generate the VHDL code for the operator
interface (black box) and a VHDL test bench for testing your implementation.

7

Visual Applets 3 Custom Operatos User’s Guide

3. Wrap your HDL code so that its interface matches the generated black box. For testing
your implementation the automatically generated test bench may help.

4. Create a net list of your implementation. Also create a constraints file if required.

5. Optionally, create the operator documentation (for the operator help window) and a
simulation model (that later allows to simulate a VA design containing the custom
operator).

6. Edit the custom operator in VA again: Add the generated netlist and optionally also the
help files and simulation model.

After these steps, your image processing module is available as custom operator directly in
VisualApplets and can be used the same way as any other operator. The custom libraries are saved
as *.vl files (similar to the user libraries). They can be deployed and distributed in this format.

8

Visual Applets 3 Custom Operatos User’s Guide

1.2 VisualApplets Custom Operator Functionality

VisualApplets (i.e., the VisualApplets Custom Operator Functionality) is used two times during this

work flow:

1. For the generation of an operator prototype in VisualApplets allowing to export HDL code
for defining the concerning IP core interface (black box and test bench).

2. For completing the operator by adding the necessary files for synthesis and (optionally)
simulation and help content.

Generation of Operator Prototype: The VA Custom Operator Functionality lets you create an

operator prototype which can immediately be used for instantiating the operator in Visual

Applets. For this operator prototype a black box interface and an RTL level simulation entity for

emulating the communication ports of the generated operator interface can be exported. Then

you can start coding (i.e., implementing your HDL code complying with the interface of the black

box) and simulating your Custom Operator design. The resulting FPGA design you then synthesize

to an EDIF or NGC netlist. Optionally, you add a constraints file, create a dynamic link library for

VisualApplets high-level simulation, and write HTML documentation for the VisualApplets GUI.

Completing the operator definition: The VA Custom Operator Functionality lets you specify the

netlist, simulation library and documentation files . Supplemented with these files the operator is

ready for use immediately.

1.3 Operator Types

VisualApplets knows different types of operators and ports, depending on the underlying flow
control mechanism. Operators may be of type O or type M.

Custom Operators are always of type M.

Custom Operator Type: M

Custom Operators are always of type M.

9

Visual Applets 3 Custom Operatos User’s Guide

1.4 Synchronous and Asynchronous Operator Ports

Operator ports can be synchronous or asynchronous. Being synchronous in VisualApplets basically

means that data of several ports is transferred synchronously, whereas ports which are

asynchronous to each other support non-aligned communication patterns.

Ports are only synchronous if they have a common M-source, or if they are sourced from a SYNC

module; any constellation of O-operators may be between that source and the ports.

Depending on the relation of the operator input ports to each other, we differentiate between the

following options:

1. Synchronous inputs: All input ports are synchronous to each other. There is one output
port.

2. Asynchronous inputs: Some of the input ports are asynchronous to each other and all
outputs are synchronous to each other.

Operators with asynchronous outputs are not allowed. Operators with synchronous inputs may

only have a single output. If more than one output is required, the inputs must be declared as

being asynchronous.

Defining Multiple Outputs

If you want to create an operator with multiple outputs, you need to declare its inputs to be

asynchronous. Multiple outputs are always synchronous.

Examples for both classes (built-in Visual-Applets operators):

RemoveImage

M-Operator with synchronous inputs
and one output

SYNC
M-Operator with asynchronous

inputs and multiple, synchronous

outputs

10

Visual Applets 3 Custom Operatos User’s Guide

2 Interface Architecture

VisualApplets Custom Operator interfaces are designed for smoothly integrating your new

operators so they behave inside VisualApplets like built-in operators. You can define any number

of input and output ports for your custom operators.

Image In / Image Out: The Image In and Image Out ports may support multiple image formats.

They are driven by simple-to-use FIFO interfaces. The FIFOs reside in the VA part of the custom

operator, so that you only need to implement a flow control, but not the FIFO.

Memory ports: You also can define any number of memory ports. They also use FIFOs residing in

the VA part of the custom operator.

GPIO ports: In addition to the image ports, you can define general-purpose I/O ports, e.g., for
communicating asynchronous signals to the operator.

Registers: To allow the final user of your operator to configure the operator and to get access to

status information, you can define any number of write and read registers.

Clock: The ports for receiving clock pulses are set up automatically for every custom operator.

Reset/Enable port: The ports for receiving reset or enable commands are set up automatically for

every custom operator.

11

Visual Applets 3 Custom Operatos User’s Guide

Figure 2: Custom Operator interfaces.

The following sections describe the different types of interfaces shown in figure 2 in detail.

2.1 Clock Interface

VisualApplets connects two clock inputs – the design clock and a second clock synchronous to the

design clock but with double frequency. All interfaces except the memory interface must be

synchronous to the design clock. The memory interface may be configured using the design clock

or the double frequency clock for the read and/or write interface.

DRAM

Visual
Applets

RAM Interfaces

General
Purpose
Input

Custom
Operator

Clock
Reset
Enable

Output Links

Controller

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Controller

MemWr/Rd

Register Interface

MemWr/Rd

Im
gI

n

Im
gO

ut
GP
Ou

t

VA
 L

in
k

SRAM

Gl
ue
 L

og
ic

GP
In

VA
 S
ig

na
l

Fifo IF

RegIn RegOut

VA
 L

in
k

VA
 S
ig

na
l

General
Purpose
Output

Input Links

12

Visual Applets 3 Custom Operatos User’s Guide

2.2 Reset and Enable

The Reset and Enable inputs are driven by the according “process enable” and “process reset”

signals of the VA-process where the operator is instantiated. Make sure you implement the

following behavior as reaction to these signals into your operator:

 Assertion of Reset puts the operator in its init state.
 Assertion of Enable starts processing.
 Deactivating Enable stops processing.
 (When Enable=0, the output FIFOs of the operator are not read. Depending on the state of the

image processing pipeline some data may still be written to the input ports but the flow
control safely prevents that any FIFO content gets corrupted.)

 Reset is only asserted when Enable=0

The following behavior to these signals is implemented in the VA part of the custom operator:

 Reset will empty all port interface FIFOs.
 Reset and Enable have no effect on the parameters of the operator.
 Reset and Enable have no effect on the GPIO interface of the operator.

DRAM

Visual
Applets

RAM Interfaces

General
Purpose
Input

Custom
Operator

Clock
Reset
Enable

Output Links

Controller

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Controller

MemWr/Rd

Register Interface

MemWr/Rd

Im
gI

n

Im
gO

ut
GP
Ou

t

VA
 L

in
k

SRAM

Gl
ue
 L

og
ic

GP
In

VA
 S
ig

na
l

RegIn RegOut

VA
 L

in
k

VA
 S
ig

na
l

General
Purpose
Output

Input Links

13

Visual Applets 3 Custom Operatos User’s Guide

DRAM

Visual
Applets

RAM Interfaces

General
Purpose
Input

Custom
Operator

Clock
Reset
Enable

Output Links

Controller

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Controller

MemWr/Rd

Register Interface

MemWr/Rd

Im
gI

n

Im
gO

ut
GP
Ou

t

VA
 L

in
k

SRAM

Gl
ue
 L

og
ic

GP
In

VA
 S
ig

na
l

RegIn RegOut

VA
 L

in
k

VA
 S
ig

na
l

General
Purpose
Output

Input Links

14

Visual Applets 3 Custom Operatos User’s Guide

2.3 Register Interface

For communicating operator parameters and status, the Custom Operator may be supplied with

an arbitrary number of VisualApplets parameters. Each of the parameters translates to a separate

register port of the Custom Operator. VisualApplets cares for dispatching the accesses to and from

the operator registers.

DRAM

Visual
Applets

RAM Interfaces

General
Purpose
Input

Custom
Operator

Clock
Reset
Enable

Output Links

Controller

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Controller

MemWr/Rd

Register Interface

MemWr/Rd

Im
gI

n

Im
gO

ut
GP
Ou

t

VA
 L

in
k

SRAM

Gl
ue
 L

og
ic

GP
In

VA
 S
ig

na
l

RegIn RegOut

VA
 L

in
k

VA
 S
ig

na
l

General
Purpose
Output

Input Links

15

Visual Applets 3 Custom Operatos User’s Guide

2.4 Interfaces for Image Data

2.4.1 Image Protocols

You can define the image protocols that will be supported by the image in and image out ports of

your custom operator. The future user of your operator will then be able to select from the list of

image protocols you provide.

VisualApplets offers the following image formats to be supported by your operator’s ImgIn and

ImgOut ports:

 grayXxP: gray image with X bits per pixel and parallelism P

 rgbYxP: color image with Y/3 bits per color component (red, green, blue) and

parallelism P

 hsiYxP: color image with Y/3 bits per color component (HSI color model) and
parallelism P

 hslYxP: color image with Y/3 bits per color component (HSL color model) and

parallelism P

 hsvYxP: color image with Y/3 bits per color component (HSV color model) and

parallelism P

DRAM

Visual
Applets

RAM Interfaces

General
Purpose
Input

Custom
Operator

Clock
Reset
Enable

Output Links

Controller

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Controller

MemWr/Rd

Register Interface

MemWr/Rd

Im
gI

n

Im
gO

ut
GP
Ou

t

VA
 L

in
k

SRAM

Gl
ue
 L

og
ic

GP
In

VA
 S
ig

na
l

RegIn RegOut

VA
 L

in
k

VA
 S
ig

na
l

General
Purpose
Output

Input Links

16

Visual Applets 3 Custom Operatos User’s Guide

 yuvYxP: color image with Y/3 bits per color component (YUV color model) and

parallelism P

 ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and
parallelism P

 labYxP: color image with Y/3 bits per color component (LAB color model) and

parallelism P

 xyzYxP: color image with Y/3 bits per color component (XYZ color model) and

parallelism P

Additionally, the image dimension and the information whether pixel components are signed or
unsigned can be coded by optional suffixes.

The pixel data width X is limited to 64 bit. The width Y must be a multiple of 3 and is limited to 63

bit. The parallelism P defines the number of pixels which are contained in a single data word at the

interface port. It must be chosen from following set of allowed values: P = {1, 2, 4, 8, 16, 32, 64}.

Packing of image data into words of a given interface width N must follow certain rules:

 The data of all P pixels must fit in a single word of length N. The data is stored LSB

aligned which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is

distributed as follows: Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

 For RGB images the three color components are packed LSB aligned into a sub

word [0..Y-1] in the following order: red uses the bits [0..Y/3-1], green the bits

[Y/3..2*Y/3-1] and blue the bits [2*Y/3..3*Y/3-1].

 For YUV color images the same rules than for RGB applies where Y takes the role

of red, U that of green and V the role of blue.

 For HSI color images the same rules than for RGB applies where H takes the role

of red, S that of green and I the role of blue.

 For LAB color images the same rules than for RGB applies where L takes the role

of red, A that of green and B the role of blue.

 For XYZ color images the same rules than for RGB applies where X takes the role

of red, Y that of green and Z the role of blue.

In VisualApplets, any link carries the properties maximum image width and maximum image

height. VisualApplets lets you define optional constraints for the maximum width and height for

any of the supported image protocols of the custom operator separately.

17

Visual Applets 3 Custom Operatos User’s Guide

For an image interface port, you define a list of allowed image protocols. This list makes up a

subset of the possible VisualApplets image formats (see above). A format can be described by the

following properties:

 Data type uint or int

 Pixel data bit width N = [1..64]

 Gray or color format (single or three data components with aggregated width N)

 Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

 2D, 1D, or 0D

 Parallelism P = {1,2,4,8,16,32,64}

Implicitly it is assumed that the kernel size is 1x1. The listed formats are numbered starting from

zero and therewith define an ID.

When working with the final operator in VisualApplets, the user of your operator can select any of

the formats you list here for the image communication port in question. According to the selection

made by the VA user, the corresponding ID will be output to the related Custom Operator port.

This enables the Custom Operator to adapt its behavior to the selected format.

2.4.2 Image Input Ports

Image input ports allow to communicate image data from the VisualApplets process to the custom

operator. These ports are named ImgIn. If you designed the custom operator to support

configuration of its input channel(s) (see section 2.4.1), several different protocols can be driven

through a single port selected by the corresponding format parameter within VisualApplets. The

interface basically consists of a FIFO and a parameter register providing an ID for the actually used

data format. The Custom Operator must care for reading the FIFO and interpreting the image data

according to the protocol of the selected image format. The operator must guarantee a correct

flow control according to the status pins providing information about the filling state of the FIFO,

i.e., no data may be read when the FIFO is empty.

For an image interface port, a list of allowed image formats needs to be defined. This list makes up

a subset of possible VisualApplets image formats (see section 2.4.1) where a format can be

described by the following properties:

 Data type uint or int

 Pixel data bit width N = [1..64]

 Gray or color format (single or three data components with aggregated width N)

 Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

18

Visual Applets 3 Custom Operatos User’s Guide

 2D, 1D, or 0D

 Parallelism P = {1,2,4,8,16,32,64}

Implicitly it is assumed that the kernel size is 1x1. The listed formats are numbered starting from

zero and therewith define an ID.

When working with the final operator in VisualApplets, the user can select any of the formats you

list here for the concerning image communication port. According to the selection made by the VA

user, the corresponding ID will be output to the related Custom Operator port. This enables the

Custom Operator to adapt its behavior to the selected format.

2.4.3 Image Output Ports

Image output ports allow communicating image data from the Custom Operator to the

VisualApplets process. These ports are named ImgOut. If you designed the custom operator to

support appropriate configuration of its output channel(s) (see section 2.4.1), several different

protocols can be driven through a single port selected by the corresponding format parameter

within VisualApplets. The interface basically consists of a FIFO and a parameter register providing

an ID for the actually used data format. The Custom Operator must care for feeding the FIFO with

image data according to the protocol of the selected image format. The operator must guarantee

a correct flow control according to the status pins providing information about the filling state of

the FIFO, i.e., no data may be written when the FIFO is full.

For an image interface port, a list of allowed image formats needs to be defined. This list makes up

a subset of possible VisualApplets image formats (see section 2.4.1) where a format can be

described by the following properties:

 Data type uint or int

 Pixel data bit width N = [1..64]

 Gray or color format (single or three data components with aggregated width N)

 Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

 2D, 1D, or 0D

 Parallelism P = {1,2,4,8,16,32,64}

Implicitly it is assumed that the kernel size is 1x1. The listed formats are numbered starting from

zero and therewith define an ID.

19

Visual Applets 3 Custom Operatos User’s Guide

When working with the final operator in VisualApplets, the user can select any of the formats you

list here for the concerning image communication port. According to the selection made by the VA

user, the corresponding ID will be output to the related custom operator port. This enables the

custom operator to adapt its behavior to the selected format.

2.5 General purpose I/O

The General Purpose I/O interface allows connecting dedicated signal pins of the custom operator.

Every GPIO port maps to a pin of the custom operator which is either an input or an output.

Bidirectional pins are not supported. In VisualApplets, the corresponding operator ports are of
type SIGNAL.

Bidirectional Pins not Supported

The GPIO pins must be either an input or an output. Bidirectional pins are not supported.

DRAM

Visual
Applets

RAM Interfaces

General
Purpose
Input

Custom
Operator

Clock
Reset
Enable

Output Links

Controller

Gl
ue
 L

og
ic

Gl
ue
 L

o g
ic

G l
ue
 L

og
ic

Controller

MemWr/Rd

Register Interface

MemWr/Rd

Im
gI

n

Im
gO

ut
GP
Ou

t

VA
 L

in
k

SRAM

Gl
ue
 L

og
ic

GP
In

VA
 S
ig

na
l

RegIn RegOut

VA
 L

in
k

VA
 S
ig

n a
l

General
Purpose
Output

Input Links

20

Visual Applets 3 Custom Operatos User’s Guide

2.6 Memory Interface

A custom operator may be set up for accessing one or more banks of memory. The concerning

memory ports have a FIFO like interface for write and read commands. The FIFOs reside in the VA

part of the custom operator, so that you only need to implement a flow control, but not the FIFO.

The timing of forwarding the FIFO content to the memory controller attached to the custom

operator is fully controlled by VisualApplets.

DRAM

Visual
Applets

RAM Interfaces

General
Purpose
Input

Custom
Operator

Clock
Reset
Enable

Output Links

Controller

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Gl
ue
 L

og
ic

Controller

MemWr/Rd

Register Interface

MemWr/Rd

Im
gI

n

Im
gO

ut
GP
Ou

t

VA
 L

in
k

SRAM

Gl
ue
 L

og
ic

GP
In

VA
 S
ig

na
l

RegIn RegOut

VA
 L

in
k

VA
 S
ig

na
l

General
Purpose
Output

Input Links

21

Visual Applets 3 Custom Operatos User’s Guide

3 Defining an Individual Custom Operator via GUI

First of all, you need to enter some details describing your new custom operator.

VisualApplets uses these details for generating a VHDL black box for your custom operator and an
according test bench for simulation.

You enter the configuration for your individual custom operator via the VisualApplets GUI.

VisualApplets makes the specified operator available for use in a design immediately, even if the

operator specification is incomplete concerning netlist, simulation model and documentation.

Custom Library File

A custom library with all contained operators is stored as one single <LibaryName>.vl file.

<LibaryName> is the name of the custom library.

This file can be distributed and directly applied in VisualApplets. It simply needs to be copied

into the Custom Library directory which is specified in the VisualApplets settings.

Operator Configuration in XML Format

VisualApplets stores the custom operator specification in XML format. You can export the XML

content from the custom library to a file, e.g., for handling it in a version control system. On

the other hand you can import the XML for adding a custom operator (see section 10.3). You

do not need to know how this XML file looks like. However, if you want to have a look, refer to

the Appendix, section 12.1.

3.1 Creating a New Custom Library

Before you can start to define a new custom operator, you need to create a custom library where

the new operator belongs to.

If you already have a custom library available where the new custom operator will belong to, skip
this section and proceed with section 3.2.

22

Visual Applets 3 Custom Operatos User’s Guide

To create a new custom library:

1. In menu Library, select menu item Create New Custom Library.

2. In the dialog that opens, enter a name for your new library and confirm with OK:

Comply with Conventions for Valid C Identifiers

When defining the library name in the VA GUI, make sure you conform to the conventions for

valid C identifiers.

Now, the new custom library is created. You can see it in the operator panel under the

Custom Library tab:

23

Visual Applets 3 Custom Operatos User’s Guide

Specifying a Custom Library Directory

For creating a new custom library, you may need to specify a directory where all custom-library-related

files are stored. You do this under Settings -> System Settings -> Paths:

24

Visual Applets 3 Custom Operatos User’s Guide

3.2 Creating a New Custom Operator

To define a new custom operator:

1. In menu Library, select menu item Edit Custom Library.

2. In the submenu that opens, select New Custom Library Element.

In the window that opens:

3. Select a custom library via double-click on the library name.

25

Visual Applets 3 Custom Operatos User’s Guide

4. Enter a name for your custom operator:

Comply with VHDL Naming Conventions

When defining the operator name in the VA GUI, make sure you conform to the VHDL naming

conventions.

VHDL valid names are defined as follows:

“A valid name for a port, signal, variable, entity name, architecture body, or similar object

consists of a letter followed by any number of letters or numbers, without space. A valid name

is also called a named identifier. VHDL is not case sensitive. However, an underscore may be

used within a name, but may not begin or end the name. Two consecutive underscores are

not permitted.“

5. Click the Create button.

Dialog Edit Custom Operator opens. Here, you can define your custom operator.

6. Click the Save button.

Now, your new custom operator is visible under the custom library it belongs to:

26

Visual Applets 3 Custom Operatos User’s Guide

Interrupting your Work

Once you have created a new custom operator and saved it to VisualApplets, you can

interrupt your work and proceed any time. To proceed, you go to the Custom Library tab,

open the library, right-click on the operator name, and from the sub menu, select Edit.

Use Operator Template Instead

Alternatively, you can use the custom operator template provided in your VisualApplets

installation to define new custom operators. How to use the template, see section 11.2.

27

Visual Applets 3 Custom Operatos User’s Guide

3.3 Defining Basic Information about Custom Operator

In a first step, you define your custom operator’s interface.

1. Provide your vendor name. You can enter any string. This information is intended for

operator identification by the user.

2. Provide a version number for your operator, e.g., version 1.0. You can enter any number

but you should comply with the version scheme “<major>.<minor>”. This information is

intended for operator version identification by the user.

3. Proceed to the tab Inputs.

28

Visual Applets 3 Custom Operatos User’s Guide

3.4 Defining the Image Input Ports

Under tab Inputs, you describe the properties of the image input ports.

1. First of all, you define the input mode of your custom operator’s ImgIn ports:

29

Visual Applets 3 Custom Operatos User’s Guide

Synchronous and Asynchronous Operator Ports

Operator ports can be synchronous or asynchronous. Being synchronous in VisualApplets

basically means that data of several ports is transferred synchronously, whereas ports which

are asynchronous to each other support non-aligned communication patterns.

Ports are only synchronous if they have a common M-source, or if they are sourced from a

SYNC module; any constellation of O-operators may be between that source and the ports.

Depending on the relation of the operator input ports to each other, we differentiate between

the following options:

1. Synchronous inputs: All input ports are synchronous to each other. There is one output

port.

2. Asynchronous inputs: Some of the input ports are asynchronous to each other and all

outputs are synchronous to each other.

Operators with asynchronous outputs are not allowed. Operators with synchronous inputs

may only have a single output. If more than one output is required, the inputs must be

declared as being asynchronous.

If you want to create an operator with multiple outputs, you need to declare its inputs to be

asynchronous. Multiple outputs are always synchronous.

Examples for both classes (built-in Visual-Applets operators):

RemoveImage
M-Operator with synchronous inputs

and one output

SYNC

M-Operator with asynchronous inputs

and multiple, synchronous outputs

Second, you can define one or more image input ports (ImgIn). Each ImgIn port may be used as

often as you specify.

2. Click on the plus button to create a first image in (ImgIn) port.

3. Give a name to the ImgIn port.

30

Visual Applets 3 Custom Operatos User’s Guide

4. Double-click in the field of the Multiplicity column to create an array of ports. Multiplicity

>1 defines an array of ports with a name consisting of the base name and an index.

Immediately, the operator depiction in the program window displays the entered array of ImgIn
ports:

In the Properties panel, you specify the properties of the protocols that are supported by this

ImgIn port.

31

Visual Applets 3 Custom Operatos User’s Guide

5. Under Port Width, specify the width of the ImgIn port.

6. Under Fifo Depth, specify the depth of the buffer FIFO for input data which at least needs

to be provided by the VA core. The value must be a power of two minus 1 between 15 and

1023.

For an image interface port, you define a list of allowed protocols. A protocol can be described by

the following properties:

 Gray or color format (single or three data components with aggregated width N)

 Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

 Pixel data bit width N = [1..64]

 Parallelism P = {1,2,4,8,16,32,64}

 2D (Aray), 1D (Line), or 0D (Raw)

 Data type uint or int

 Max. image dimensions

Implicitly it is assumed that the kernel size is 1x1.

The listed protocols are numbered starting from zero and therewith define an ID (in the image

below visible in the left hand column of the table in the Properties panel).

If you specify more than one protocol, you design the custom operator to support configuration of

32

Visual Applets 3 Custom Operatos User’s Guide

its input channel(s). In this case, several different protocols can be driven through a single port.

The user of your custom operator can select the protocol he wants to use on a specific ImgIn port.

According to the selection made by the VA user, the corresponding ID will be output to the related

custom operator port. This enables the custom operator to adapt its behavior to the selected

protocol.

7. Under Format, specify the color format of the protocol.

The following color formats are allowed:

 grayXxP: gray image with X bits per pixel and parallelism P

 rgbYxP: color image with Y/3 bits per color component (red, green, blue) and

parallelism P

 hsiYxP: color image with Y/3 bits per color component (HSI color model) and

parallelism P

 hslYxP: color image with Y/3 bits per color component (HSL color model) and

parallelism P

 hsvYxP: color image with Y/3 bits per color component (HSV color model) and

parallelism P

 yuvYxP: color image with Y/3 bits per color component (YUV color model) and

parallelism P

 ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and

parallelism P

 labYxP: color image with Y/3 bits per color component (LAB color model) and

parallelism P

 xyzYxP: color image with Y/3 bits per color component (XYZ color model) and

33

Visual Applets 3 Custom Operatos User’s Guide

parallelism P

8. Double-click in the field of column Pix.Width and specify the pixel data width for the

specific format:

The value range of Pix.Width depends on your choice under Format:

Gray: The pixel data width (in the following referred to as X) is limited to 64 bit.

All color formats: The pixel data width (in the following referred to as Y) must be a
multiple of 3 and is limited to 63 bit.

9. Double-click in the field of column Parall. and specify the parallelism for the specific

format.

The parallelism defines the number of pixels which are contained in a single data word at

the interface port. It must be chosen from following set of allowed values: P = {1, 2, 4, 8,

16, 32, 64}. Packing of image data into words of a given interface width N (specified under

Port Width) must follow certain rules:

 The data of all P pixels must fit in a single word of length N. The data is stored LSB

aligned which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is

distributed as follows: Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

 For RGB images the three color components are packed LSB aligned into a sub

word [0..Y-1] in the following order: red uses the bits [0..Y/3-1], green the bits

[Y/3..2*Y/3-1] and blue the bits [2*Y/3..3*Y/3-1].

 For HSI color images the same rules than for RGB applies where H takes the role

of red, S that of green and I the role of blue.

 For HSL color images the same rules than for RGB applies where H takes the role

of red, S that of green and L the role of blue.

 For HSV color images the same rules than for RGB applies where H takes the role

of red, S that of green and V the role of blue.

 For YUV color images the same rules than for RGB applies where Y takes the role

34

Visual Applets 3 Custom Operatos User’s Guide

of red, U that of green and V the role of blue.

 For YCrCb color images the same rules than for RGB applies where Y takes the

role of red, Cr that of green and Cb the role of blue.

 For LAB color images the same rules than for RGB applies where L takes the role

of red, A that of green and B the role of blue.

 For XYZ color images the same rules than for RGB applies where X takes the role

of red, Y that of green and Z the role of blue.

10. Under Dimension, specify if the protocol supports 2D (Area), 1D (Line), or 0D (Raw) images.

11. Max.Width/Max.Height: Using these optional fields you can define constraints for the

image width and image height.

12. Repeat steps 7 to 11 to define as many protocols as you want the ImgIn port to support.

13. Repeat steps 2 to 12 to define as many ImgIn ports you want your custom operator to

provide.

35

Visual Applets 3 Custom Operatos User’s Guide

3.5 Defining the GPIO Ports

The General Purpose I/O interface allows connecting dedicated signal pins of the custom operator.

Every GPIO port maps to a pin of the custom operator which is either an input or an output.

Bidirectional pins are not supported. In VisualApplets, the corresponding operator ports are of
type SIGNAL.

1. Go to tab GPIO.

2. Add as many GPIs and GPOs as you want, using the plus button .

3. Double-click into the field to give a name to a specific GPI or GPO.

The defined GPIs and GPOs are immediately displayed in the depiction of the custom operator in

the upper left hand panel of the program window:

Bidirectional Pins not Supported

The pins are either an input or an output. Bidirectional pins are not supported.

36

Visual Applets 3 Custom Operatos User’s Guide

3.6 Defining the Image Output Ports

Under tab Outputs, you describe the properties of the image output ports.

You can define one or more image output ports (ImgOut). Each ImgOut port may be used as often

as you specify.

1. Click on the plus button to create a first image out (ImgOut) port.

2. Give a name to the ImgOut port.

37

Visual Applets 3 Custom Operatos User’s Guide

3. Double-click in the field of the Multiplicity column to create an array of ports. Multiplicity

>1 defines an array of ports with a name consisting of the base name and an index.

Immediately, the operator depiction in the program window displays the entered array of ImgOut

ports:

In the Properties panel, you specify the properties of the protocols that are supported by this

ImgOut port.

38

Visual Applets 3 Custom Operatos User’s Guide

4. Under Port Width, specify the width of the ImgOut port.

5. Under Fifo Depth, specify the depth of the buffer FIFO for output data which at least needs

to be provided by the VA core. The value must be a power of two minus 1 between 15 and

1023.

For an image interface port, you define a list of allowed protocols. A protocol can be described by

the following properties:

 Gray or color format (single or three data components with aggregated width N)

 Flavor of color format (RGB, HSI, HSL, HSV, YUV, YCrCb, LAB, XYZ)

 Pixel data bit width N = [1..64]

 Parallelism P = {1,2,4,8,16,32,64}

 2D (Aray), 1D (Line), or 0D (Raw)

 Data type uint or int

 Max. image dimensions

Implicitly it is assumed that the kernel size is 1x1.

The listed protocols are numbered starting from zero and therewith define an ID (in the image

below visible in the left hand column of the table in the Properties panel).

39

Visual Applets 3 Custom Operatos User’s Guide

If you specify more than one protocol, you design the custom operator to support configuration of

its input channel(s). In this case, several different protocols can be driven through a single port.

The user of your custom operator can select the protocol he wants to use on a specific ImgOut

port. According to the selection made by the VA user, the corresponding ID will be output to the

related custom operator port. This enables the custom operator to adapt its behavior to the

selected protocol.

6. Under Format, specify the color format of the protocol.

The following color formats are allowed:

 grayXxP: gray image with X bits per pixel and parallelism P

 rgbYxP: color image with Y/3 bits per color component (red, green, blue) and

parallelism P

 hsiYxP: color image with Y/3 bits per color component (HSI color model) and

parallelism P

 hslYxP: color image with Y/3 bits per color component (HSL color model) and

parallelism P

 hsvYxP: color image with Y/3 bits per color component (HSV color model) and

parallelism P

 yuvYxP: color image with Y/3 bits per color component (YUV color model) and

parallelism P

 ycrcbYxP: color image with Y/3 bits per color component (YCrCb color model) and

parallelism P

 labYxP: color image with Y/3 bits per color component (LAB color model) and

parallelism P

 xyzYxP: color image with Y/3 bits per color component (XYZ color model) and

parallelism P

7. Double-click in the field of column Pix.Width and specify the pixel data width for the

40

Visual Applets 3 Custom Operatos User’s Guide

specific format:

The value range of Pix.Width depends on your choice under Format:

Gray: The pixel data width (in the following referred to as X) is limited to 64 bit.

All color formats: The pixel data width (in the following referred to as Y) must be a

multiple of 3 and is limited to 63 bit.

8. Double-click in the field of column Parall. and specify the parallelism for the specific

format.

The parallelism defines the number of pixels which are contained in a single data word at

the interface port. It must be chosen from following set of allowed values: P = {1, 2, 4, 8,

16, 32, 64}. Packing of image data into words of a given interface width N (specified under

Port Width) must follow certain rules:

 The data of all P pixels must fit in a single word of length N. The data is stored LSB

aligned which means that for a pixel width Z (Z=X for grey, Z=Y for color) data is

distributed as follows: Pixel[0]->Bits[0..Z-1] .. Pixel[P-1]->Bits[(P-1)*Z..P*Z-1].

 For RGB images the three color components are packed LSB aligned into a sub

word [0..Y-1] in the following order: red uses the bits [0..Y/3-1], green the bits

[Y/3..2*Y/3-1] and blue the bits [2*Y/3..3*Y/3-1].

 For HSI color images the same rules than for RGB applies where H takes the role

of red, S that of green and I the role of blue.

 For HSL color images the same rules than for RGB applies where H takes the role

of red, S that of green and L the role of blue.

 For HSV color images the same rules than for RGB applies where H takes the role

of red, S that of green and V the role of blue.

 For YUV color images the same rules than for RGB applies where Y takes the role

of red, U that of green and V the role of blue.

 For YCrCb color images the same rules than for RGB applies where Y takes the

role of red, Cr that of green and Cb the role of blue.

41

Visual Applets 3 Custom Operatos User’s Guide

 For LAB color images the same rules than for RGB applies where L takes the role

of red, A that of green and B the role of blue.

 For XYZ color images the same rules than for RGB applies where X takes the role

of red, Y that of green and Z the role of blue.

9. Under Dimension, specify if the protocol supports 2D (Area), 1D (Line), or 0D (Raw) images.

10. Max.Width/Max.Height: Using these optional fields you can define constraints for the

image width and image height.

11. Repeat steps 7 to 11 to define as many protocols as you want the ImgOut port to support.

12. Repeat steps 2 to 12 to define as many ImgOut ports you want your custom operator to

support.

42

Visual Applets 3 Custom Operatos User’s Guide

3.7 Defining the Memory Ports

A custom operator may be set up for accessing one or more banks of memory (DRAM, SRAM, …).

All memory ports have a FIFO-like interface for write and read commands. The FIFOs reside in the

VA part of the custom operator, so that you only need to implement a flow control, but not the

FIFO. The timing of forwarding the FIFO content to the memory controller attached to the custom

operator is fully controlled by VisualApplets.

Under the Memory tab, you can define that your operator gets access to external memory. You

can specify up to 4 ports. You can specify the memory interface properties the operator needs.

Comply with Memory Layout of Target Platforms

Keep in mind the memory layout of potential target platforms (on which the applets

containing the custom operator will run).

Parameter name Type Description

Data Width Integer Data width

Address Width Integer Address width

43

Visual Applets 3 Custom Operatos User’s Guide

Number of Write Flags

(Width)

Integer Width of flag for marking write accesses. This

parameter must be >= 1.

Number of Read Flags

(Width)

Integer Width of flag for marking read accesses. This

parameter must be >= 8.

SyncMode String This parameter signals the relation of the

memory interface clock and the design clock.

Following values are possible:

“SyncToDesignClk” – memory interface ports

are synchronous to iDesignClk.

“SyncToDesignClk2x” – memory interface
ports are synchronous to iDesignClk2x.

3.8 Defining the Registers of the Custom Operator

Under the Registers tab, you can define the write and read registers your custom operator will

provide. Each of this registers is accessed in VisualApplets via a dedicated operator parameter.

(The parameter name is the same as the register name.)

1. Go to the Registers tab.

2. Under Write Registers, define the write registers you want your custom operator to have.

3. Define a specific width for each write register.

4. Under Read Registers, define the read register you want your custom operator to have.

5. Define a specific width for each read register.

The related operator parameters are immediately displayed in the left hand lower panel of the

dialog window:

44

Visual Applets 3 Custom Operatos User’s Guide

6. Click Save.

45

Visual Applets 3 Custom Operatos User’s Guide

4 Generation of VHDL Black Box and Test Bench

After you have entered all details as described in section 3, you are ready for the actual VHDL

coding. First of all, you need VisualApplets to generate the VHDL black box and test bench.

To trigger VHDL black box and test bench generation:

1. In the Library panel of the VisualApplets program window, go to the Custom Library tab.

2. Open the custom library and select the custom operator you want to implement.

3. Right-click on the operator name, and from the sub menu, select Export -> VHDL.

4. Specify the folder where you want the created VHDL files to be stored.

Now, the generation starts. After successful generation, you get the following message:

You find all generated files in the folder you specified:

46

Visual Applets 3 Custom Operatos User’s Guide

47

Visual Applets 3 Custom Operatos User’s Guide

5 Operator Interface Ports

The generated black box provides all ports you specified via the GUI (see section3).

In this chapter, you find a detailed description of how these ports look like in the generated VHDL
black box.

5.1 Clock System, Reset and Enable

VisualApplets supports two clock domains. There is a base design clock and one derived clock

which is in phase with that clock and has double frequency. Accordingly, there are two clock inputs

to the Custom Operator. Additionally, there is a Reset and Enable input as described above.

Port Direction Width Description

iDesignClk In 1 Base design clock

iDesignClk2x In 1 Clock sync. to iDesignClk but
double frequency

iReset In 1 Reset of operator

iEnable In 1 Enable processing

5.2 Parameter Interface

The definition of write register ports as described in section 3.8 (XML1: Operator/IO/RegInInfo)

leads to an interface as follows where PORTID is the register name and PORTIDWidth is the

defined register width (in XMl defined in the corresponding entry of Operator/RegIn).

1 All entries you make to specify the interface of your custom operator (section 3) are written into an XML

file. Information about structure and syntax of this XML file is provided in the Appendix, section 12.1 .

48

Visual Applets 3 Custom Operatos User’s Guide

Port Direction Width Description

ivReg_PORTID_D In PORTIDWidth Register data

iReg_PORTID_Wr In 1 Signal write access

The definition of read register ports as described in section 3.8 (XML: Operator/IO/RegOutInfo)

leads to the following interface, accordingly:

Port Direction Width Description

ovReg_PORTID_D Out PORTIDWidth Register data

iReg_PORTID_Rd In 1 Signal read access

5.3 Image Communication Interfaces

For communication of data between the VisualApplets core and a Custom Operator, image

communication ports as described in section 3.4 may be configured. Communication is done

via a simple FIFO interface and an additional format identifier port.

5.3.1 Interfaces of Type ImgIn

An ImgIn channel for transferring data from the VisualApplets core to a Custom Operator leads to

an interface as follows where PORTID is the name of the corresponding port type name (XML:

attribute Operator/ImgIn/name referenced by Operator/IO/ImgInInfo) and X is a port number for

differentiating several ports of the same kind:

Port Direction Width Description

ivPORTIDXData In PORTIDWidth Data entering the

Custom Operator

oPORTIDXRead Out 1 Accept input data

49

Visual Applets 3 Custom Operatos User’s Guide

Port Direction Width Description

iPORTIDXEndOfLine In 1 Signal end of line. If

this flag is activated

data doesn’t contain

pixel values.

iPORTIDXEndOfFrame In 1 Signal end of frame. If

this flag is activated

data doesn’t contain

pixel values. This flag

is only asserted when

end of line is signaled

as well.

iPORTIDXFIFOEmpty In 1 Buffer FIFO is empty

ivPORTIDXFIFOCnt In Ceil Log2(

PORTIDFIFODepth

)

Number of words in

buffer FIFO. This

signal can be used to

generate FIFO flags

like Almost Empty.

ivPORTIDX_FID_D In Ceil Log2(N) Predefined parameter

which notifies about

the current image

data format. N is the

number of image

formats specified for

this port.

Figure 3 illustrates the data flow at an ImgIn port. The port name component PORTIDX has been

substituted by ‘ImgIn’. The waveform shows the input of a two dimensional frame of size 3x2.

When the ImgIn port is part of several O-synchronous input ports, all of them must consume the
FIFO data simultaneously. In that case the FIFO fill level of all ports will exactly match so the

50

Visual Applets 3 Custom Operatos User’s Guide

operator only needs to implement flow control according to the fill level of one out of several O-

synchronous inputs.

Figure 3: Waveform illustrating the protocol on an image input port.

5.3.2 Interfaces of Type ImgOut

An ImgOut channel for transferring data from a Custom Operator to the VisualApplets core leads

to an interface as follows where PORTID is the name of the corresponding port type name (XML:

attribute Operator/ImgOut/name referenced by Operator/IO/ImgOutInfo) and X is a port number for

differentiating several ports of the same kind:

Port Direction Width Description

ovPORTIDXData Out PORTIDWidth Output data

oPORTIDXValid Out 1 Output data valid

oPORTIDXEndOfLine Out 1 Signal current write

access as end of line

notification. Write

data is then not

interpreted as pixel

data.

oPORTIDXEndOfFrame Out 1 Signal current write

access as end of

frame notification.

Write data is then not

interpreted as pixel

51

Visual Applets 3 Custom Operatos User’s Guide

Port Direction Width Description

 data. This flag needs

to be correlated with

an end of line strobe

at the same time.

iPORTIDXFIFOFull In 1 Buffer FIFO is full, no

further data is

accepted

ivPORTIDXFIFOCnt In Ceil Log2(

PORTIDFIFODepth

)

Number of words in

buffer FIFO. This

signal can be used to

generate FIFO flags

like Almost Full.

ivPORTIDX_FID_D In Ceil Log2(N) Predefined

parameter which

notifies about the

current image data

format. N is the

number of image

formats specified for

this port.

Figure 4 illustrates the data flow at an ImgOut port. The waveform shows the output of a two

dimensional frame of size 3x2. When the ImgOut port is part of several O-synchronous output

ports all of them must emit data simultaneously.

Figure 4: Waveform illustrating the protocol on an image output port.

52

Visual Applets 3 Custom Operatos User’s Guide

5.4 Memory Interfaces

A Custom Operator may be set up for having up to four memory ports. The I/O ports of the

generated interface get a suffix X where X is the index of the memory port (XML:

Operator/IO/MemInfo).

Name Direction Width Description

ovMemWrDataX Out MemDataWidthX Write data output to memory
via VisualApplets core

ovMemWrFlagX Out MemWrFlagWidthX Write flag output

ovMemWrAddrX Out MemAddrWidthX Write address

oMemWrAddrValidX Out 1 Emit write command

oMemWrPriorityX Out 1 Request priority for this write

port

iMemWrAlmostFullX In 1 Only single further write

command may be accepted

iMemWrFullX In 1 No write command is accepted

as concerning FIFO is full

iMemWrEmptyX In 1 FIFO for write commands is

empty

ivMemWrCntX In 4 Number of buffered write
commands

ivMemWrFlagX In MemWrFlagWidthX Write flag output from the

VisualApplets core

53

Visual Applets 3 Custom Operatos User’s Guide

Name Direction Width Description

iMemWrFlagValidX In 1 Write flag input valid – signals

that iMemWrFlagX is valid,

which means that write access

which had been marked with

corresponding oMemWrFlagX

has been executed.

ovMemRdFlagX Out MemRdFlagWidthX Read flag

ovMemRdAddrX Out MemAddrWidthX Read address

oMemRdAddrValidX Out 1 Emit read command

oMemRdPriorityX Out 1 Request priority for this read
port

iMemRdAlmostFullX In 1 Only single further read
command may be accepted

iMemRdFullX In 1 No read command is accepted
as concerning FIFO is full

iMemRdEmptyX In 1 FIFO for read commands is

empty

ivMemRdCntX In 4 Number of buffered read
commands

ivMemRdFlagX In MemRdFlagWidthX Read flag input – only valid

when iMemRdDataValidX is

asserted

ivMemRdDataX In MemDataWidthX Read data input

54

Visual Applets 3 Custom Operatos User’s Guide

Name Direction Width Description

iMemRdDataValidX In 1 Read data valid

Figure 5: Waveform illustrating the memory interface protocol.

5.5 General Purpose I/O pins

Any GPIO input or output signal which has been defined in the interface description of the custom

operator (section 3) has a corresponding input or output port in the resulting operator interface.

The following ports will be created when the general purpose pins are declared (in XML with the

name NAME within Operator/IO/RegInInfo or Operator/IO/RegOutInfo):

 iSig_NAME for a GPIO input signal called NAME

 oSig_NAME for a GPIO output signal called NAME

55

Visual Applets 3 Custom Operatos User’s Guide

6 VHDL Simulation and Verification

For emulating a VisualApplets design which contains a custom operator module, VisualApplets

creates a simulation test bench for the interfaces connecting to the custom operator.

Each interface port is emulated independently, driven by File I/O. The simulation entity shall
consist of following elements:

 Emulation of register access. According to a stimuli file a set of registers can be

written and read.

 Emulator for frame source connected to ports of type ImgIn. Stimulated by file

these kinds of modules output frame data to ImgIn.

 Emulator for frame sink connected to ports of type ImgOut. This kind of module

emulates an operator which is connected to ImgOut. The module writes the

received data to file.

 Memory port emulator.

 GPIO emulator. Each GPIO signal for input is driven by a signal generator which is

configured by a file. Each GPIO signal output is monitored and changes of the

signal are written to a report file.

6.1 Simulation Framework

For RTL level simulation, VisualApplets creates a VHDL file containing a package with the name

Cus t omOper at or _<OPERATORNAME> where <OPERATORNAME> is the given operator

name.

This package contains the components <OPERATORNAME> and <OPERATORNAME>_TB where

the latter is a test bench of the interface between the VisualApplets design and the Custom

Operator. The following shows the resulting code for a simple Custom Operator called RegExample

consisting only of a read and write register port (‘Ctrl’ and ‘Status’), each 4 bit wide:

component

RegExample port(

iDesignClk: in std_logic := '0';

iDesignClk2x: in std_logic :=

'0'; iReset: in std_logic := '0';

iEnable: in std_logic := '0';

ivReg_Ctrl_D: in std_logic_vector(3 downto

56

Visual Applets 3 Custom Operatos User’s Guide

0); iReg_Ctrl_Wr: in std_logic;

ovReg_Status_D: out std_logic_vector(3 downto 0);

iReg_Status_Rd: in std_logic

);

end component;

component

RegExample_TB generic(

DesignClkPeriod: time := 16 ns;

Register_StimuliFileName: string := ""

);

end component;

The test bench creates an instance of the custom operator and connects protocol emulation

modules to each interface ports. The following sections describe the different kinds of emulators,

how they may be controlled via stimuli files, and how output files are generated.

6.2 Emulation of Register Interface

The generated test bench implements an emulator for a register access interface. The emulator is

configured for addressing a design with a single process. Addresses of write and read registers

start from 0x4 where addresses for registers are counted up with an increment of 1 according to

the sequence of the register interface ports in the given custom operator component (like the

above example component RegExample). Register addresses for reading and writing are counted

independently. The emulator is driven by a text file which is set by the entity parameter

Register_StimuliFileName as provided in the above VHDL code.

The following commands may be present in the stimuli file:

REM Rest of line is comment

GRS Emulate global reset

PRS

Emulate process reset. This command has the following syntax,

PRS <procNr>

where the parameter <procNr> must always be 0.

57

Visual Applets 3 Custom Operatos User’s Guide

PEN

Enable process. The syntax is as follows,

PEN <procNr> <value>

with <procNr> being always 0 and <value> signaling the enable state.

WCK

Wait for a number of clock cycles. The syntax is as follows,

WCK <clock_ticks>

with <clock_ticks> giving the number of clock ticks in hexadecimal format

WRR

Write to register,

WRR <wrRegAddr> <value>

With the parameters:

<wrRegAddr>: address of register (hex)

<value>: hexadecimal register value

RDR Read from register,

RDR <rdRegAddr>

with <wrRegAddr> being the register address (hex).

After the last parameter of any command, a comment may be added preceded by ‘#’.

The following code is an example stimuli file which accesses the registers according to the above

given test bench RegExample_TB:

REM

**

REM Command formats:

REM GRS -> Global reset

REM GEN <value> -> Set global enable to <value>

REM PRS <procID> -> Reset process <procID> (0 ..

F) REM PEN <procID> <value> -> Set enable of process

<procID> to

<value>

REM WCK <clk_ticks> -> Wait for <clk_ticks> clock

58

Visual Applets 3 Custom Operatos User’s Guide

cycles REM WRR <wrRegAddr> <value> -> Write <value> to register

<wrRegAddr> REM RDR <rdRegAddr> -> Read from register

<rdRegAddr>

REM **

WCK 0004 # wait for 4 clock
cycles

GRS # global reset

GEN 1 # set global enable

WCK 0001 # wait for 1 clock tick

PRS 0 # reset process 0

PEN 0 1 # set enable of process
0

WCK 0002 # wait for 2 clock ticks

WRR 0004 0000000A # write 0xA to address
0x4

WCK 0002 # wait for 2 clock ticks

RDR 0004 # read from address 0x4

WCK FFFF

6.3 Emulation of ImgIn Interface

The emulation of image communication interfaces of type ImgIn is driven by a stimuli file

providing information about the sequence of data which enters the Custom Operator. For any

present ImgIn port the test bench has a generic <PORTIDX>_StimuliFileName where <PORTIDX> is

the name of the corresponding image input port type followed by the port number. Each line

within the given file must follow the syntax,

<Command> <Data> <EndOfLine> <EndOfFrame> <DataValid>

where <Command> is a three letter command, <Data> provides an hexadecimal data word, and the

three remaining parameters correspond to the image protocol flags.

59

Visual Applets 3 Custom Operatos User’s Guide

The following table describes the available commands:

DAT
Data command. This command provides data which will become input at the
port ivPORTIDXData and the associated image protocol flag ports.

WCK
Wait command. The parameter <Data> provides the number of clock ticks for

which the command interpreter pauses.

FI D
Set FID input. The parameter <Data> provides the value to which the port
ivPORTIDX_FID_D will be set.

To any command line a comment may be added, preceded by ‘#’.

The following code is an example stimuli file which causes the input of an 3x2-image:

FID 00000001 0 0 0 #Format: Cmd Data(hex) EndOfLine EndOfFrame DataValid

DAT 00000000 0 0 0

DAT 0000001a 0 0 1

DAT 0000001b 0 0 1

DAT 0000001c 0 0 1

DAT 00000000 1 0 1

WCK 00000004 0 0 0

DAT 0000002a 0 0 1

DAT 0000002b 0 0 1

DAT 0000002c 0 0 1

DAT 00000000 1 1 1

WCK 0000FFFF 0 0 0

6.4 Emulation of ImgOut Interface

The emulation of image communication interfaces of type ImgOut is driven by a stimuli file where

information is provided about the sequence of FID states. For any present ImgOut port the

VA_Design_Emulator entity has a generic <PORTIDX>_StimuliFileName where <PORTIDX> is the

name of the corresponding image output port type followed by the port number. The syntax is

exactly the same as in the case of the stimuli for ImgIn interfaces except that no DAT command is

available. A simple stimuli file may look like,

60

Visual Applets 3 Custom Operatos User’s Guide

WCK 00000010 0 0 0 #Format: Command Data(hex)

FID 00000001 0 0 0

WCK 0000FFFF 0 0 0

where the parameters <EndOfLine>,<EndOfFrame> and <DataValid> are actually meaningless.

The ImgOut interface emulator present in the generated test bench writes the received data to

file. For that purpose the test bench entity has a generic <PORTIDX>_DumpFileName. During

simulation a file with the given name is created and the data is written using DAT and WCK

commands in a format, which exactly corresponds to the stimuli file format for an ImgIn interface

emulator.

6.5 Emulation of Memory Communication

When the Custom Operator implements an interface to memory the test bench connects a

memory emulation module to the corresponding interface ports. The Custom Operator may not

rely on a certain timing of the memory interface (like time until read data is returned) as this is

fully controlled by VisualApplets and may vary between platforms and even between different

designs.

6.6 GPIO Emulation

The emulation of dedicated input signals is done for each signal independently, driven by a stimuli

file. There information is provided about the sequence of signal states. The stimuli file may consist

of a number of commands which are described below. For any present output signal port the test

bench entity has a generic iSig_<NAME>_StimuliFileName where <NAME> is the concerning port

name.

The following table describes the available commands:

SET

Set signal. This command provides the signal state to which the output at the

port i Si g_NAME will be set. The next command will be executed one clock

tick later. It has the syntax,

SET <value>

where <value> may be 0 or 1.

61

Visual Applets 3 Custom Operatos User’s Guide

WCK

Wait command. It has the syntax,

WCK <ticks>

where the parameter <ticks> provides the number of clock ticks for which
the signal will be held constant.

RST

Restart from begin. The command interpreter will start again from the first

line of the stimuli file. This command does not have any parameters. The

command will execute the first command of the file at the same clock tick

allowing assembling a loop without a gap.

STP

Stop at current state. The command interpreter will stop and the current
signal state will be held constant until end of simulation. This command does

not have any parameters.

To any command line a comment may be added, preceded by ‘#’.

The following code is an example stimuli file which causes the Custom Operator input signal toggling being
low for 5 clock cycles and high for 7 clock cycles (synchronous to iDesignClk):

SET 0 # deassert output

WCK 0004 # wait for 4 clock cycles

SET 1 # assert output

WCK 0006 # wait for 6 clock cycles

RST # restart from begin

Dedicated output signals are monitored writing a dump file oSig_<NAME>_DumpFileName where

<NAME> is the concerning port name. The file is composed of SET and WCK commands exactly

corresponding to the commands of the stimuli file for an dedicated input signal.

62

Visual Applets 3 Custom Operatos User’s Guide

7 Defining the Custom Operator’s Software Interface

The following software components must be provided for fully integrating a custom operator to

VisualApplets:

1. High-level simulation component

2. Throughput analysis

The software components need to be compiled to a dynamic link library with a predefined set of
exported C-Functions.

You add this file to the operator specification under tab General / Simulation Library:

(In XML, the entry Operator/Info/LibraryFile points to this file.)

7.1 High-level Simulation

7.1.1 Overview

For High-level simulation within VisualApplets the following function must be exported,

int SimulateOPNAME (va_custom_op_sim_handle simHandle)

where OPNAME is the name of the Custom Operator.

63

Visual Applets 3 Custom Operatos User’s Guide

High-level simulation must be done according to following requirements:

 Frame based simulation - On each image input port it can be queried whether

one or more frames are available. If all ports which are required for starting

simulation are able to provide a frame then the concerning output frames need

to be computed and emitted via calls of appropriate functions. For one

dimensional image data the data stream is automatically split into frames and

simulated just like 2D-data.

 Bit accurate simulation – The calculation of resulting frames must be bit accurate,
i.e. the output data must be exactly equal to the data generated by the hardware

implementation.

 Keeping consistency of flow – When operator input ports are synchronous to

each other input images must be fetched accordingly. When several outputs are

defined images must be output simultaneously. For the simulation function this

means that when a frame is output to one output link it must also output a frame

to all other output links before the simulation function is returning.

As the behavior of the operator typically depends on the set of operator parameters these

parameters may be queried via the following interface:

Nr. Function Description

1 vaSi_CustomOp_GetParamValue() Get value of operator parameter.

A number of functions are provided by VisualApplets for getting, generating and storing image
data for the Custom Operator:

Nr. Function Description

1 vaSi_CustomOp_GetInputImage()
Get image available at an ImgIn

port.

2 vaSi_CustomOp_PutOutputImage() Output image to ImgOut port.

3 vaSi_CustomOp_InputHasImage()
Query whether ImgIn port may
deliver an image.

64

Visual Applets 3 Custom Operatos User’s Guide

Nr. Function Description

4 vaSi_CustomOp_OutputReady()
Query whether ImgOut port may

take an image.

5 vaSi_CustomOp_CreateImage() Create new image.

6 vaSi_CustomOp_DeleteImage() Delete image.

7 vaSi_CustomOp_StoreImage()

Store image in local storage of

operator instance providing a

name whereby the image may

later be referenced.

8 vaSi_CustomOp_GetStoredImagesCount()
Query number of images stored
within operator instance.

9 vaSi_CustomOp_GetStoredImage() Get stored image by index.

10 vaSi_CustomOp_GetNameOfStoredImage()
Get name of stored image by

index.

11 vaSi_CustomOp_GetStoredImageByName() Get stored image by name.

12 vaSi_CustomOp_CreateImageFormat()

Create new image format handle

which becomes initialized by the

format associated with the given

port.

13 vaSi_CustomOp_CopyImageFormat()
Create new image format which is a

copy of given format.

14 vaSi_CustomOp_DeleteImageFormat()
Delete image format handle

created earlier.

65

Visual Applets 3 Custom Operatos User’s Guide

For manipulating images via image handles the following functions are available:

Nr. Function Description

1 vaSi_Image_GetFormat() Get image format.

2 vaSi_Image_SetProperty() Set property of frame (e.g. height).

3 vaSi_Image_GetProperty() Get property of frame.

4 vaSi_Image_SetPixelValue() Set pixel component value

5 vaSi_Image_GetPixelValue() Get pixel component value

6 vaSi_Image_SetLineLength () Set individual length of a line.

7 vaSi_Image_GetLineLength () Get length of individual line.

Image formats may be manipulated via the following functions:

Nr. Function Description

1 vaSi_ImageFormat_SetProperty()
Set image format property (e.g. maximum

width).

2 vaSi_ImageFormat_GetProperty() Get image format property.

The simulation function may inject an status message (i.e., error message) into the VisualApplets

simulation system using the following functions:

Nr. Function Description

1 vaSi_CreateStatusMessage() Create status message.

2 vaSi_SetStatusMessageProperty()
Set property of status message (like
severity).

3 vaSi_SendStatusMessage()
Submit the status message to the

simulation engine.

66

Visual Applets 3 Custom Operatos User’s Guide

7.1.2 Communicating Data

For querying information and configuring parameters data must be exchanged through the

software interface. In order to keep the interface functions simple but providing a type save

interface an abstraction mechanism for data is implemented. Whenever data of different types

needs to be communicated a data structure called va_data is used, containing a reference to the

data and information about the underlying data type. This data structure is created by the user but

configured by dedicated functions listed below. The following table shows the data types which

are handled by this method:

VA_ENUM enum entry given as 32-Bit integer

VA_INT32 32-Bit signed integer

VA_UINT32 32-Bit unsigned integer

VA_INT64 64-Bit signed integer

VA_UINT64 64-Bit unsigned integer

VA_DOUBLE Floating-point number, double precision

VA_INT32_ARRAY Array of 32-Bit signed integer numbers

VA_UINT32_ARRAY Array of 32-Bit unsigned integer numbers

VA_INT64_ARRAY Array of 64-Bit signed integer numbers

VA_UINT64_ARRAY Array of 64-Bit unsigned integer numbers

VA_DOUBLE_ARRAY Array of double numbers

VA_STRING String given as const char*

67

Visual Applets 3 Custom Operatos User’s Guide

Configuring an earlier created va_data structure (vaData) for setting up data communication is
done via the following functions:

va_data* va_data_enum(va_data* vaData, int32_t *data)

va_data* va_data_int32(va_data* vaData, int32_t *data)

va_data* va_data_uint32(va_data* vaData, uint32_t

data) va_data va_data_int64(va_data* vaData, int64_t

data) va_data va_data_uint64(va_data* vaData,

uint64_t *data) va_data* va_data_double(va_data*

vaData, double *data) va_data*

va_data_int32_array(va_data* vaData, int32_t *data,

size_t elementCount)

va_data* va_data_uint32_array (va_data* vaData, uint32_t *data,

size_t elementCount)

va_data* va_data_int64_array (va_data* vaData, int64_t *data,

size_t elementCount)

va_data* va_data_uint64_array (va_data* vaData, uint64_t *data,

size_t elementCount)

va_data* va_data_double_array (va_data* vaData, double *data,

size_t elementCount)

va_data* va_data_string(va_data* vaData, char data*, size_t

strSize) va_data* va_data_const_string(va_data* vaData, const

char **data)

For strings there are two options how strings are communicated:

1. Providing a char array via va_data_string(). Then queried string data will be copied to

that array.

2. Providing a pointer to const char*. Then a pointer to an internal string representation is
returned when information of type VA_STRING is queried. When you use this approach
check the livetime of the returned string.

Example Code:

The following example shows code for querying the image width.

uint32_t imgWidth;

va_data

va_imgWidth;

va_data_double(&va_imgWidth,&imgWidth);

vaSi_Image_GetProperty(imageHandle, "Width", &va_imgWidth);

68

Visual Applets 3 Custom Operatos User’s Guide

After that the variable imgWidth will contain the requested information.

7.1.3 Detailed Description of Interface Functions

The following gives a detailed description of parameters and returned values for the specified

simulation interface functions.

Function int vaSi_CustomOp_GetParamValue (va_custom_op_sim_handle

simHandle, const char* paramName, va_data *value)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of parameter.

Parameter 3 Return parameter for queried value.

Description Returns the value of the parameter with the given name.

Return value
0 : Value is queried data

<0: Cannot query parameter

Function int vaSi_CustomOp_GetInputImage (va_custom_op_sim_handle

simHandle, const char* portName, va_image_handle *image)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator port.

Parameter 3 Return parameter for image handle.

Description

Take an image which enters the operator at the given port and return a

handle referencing that image. Before returning from the simulation

function this image must either be stored by calling

vaSi_CustomOp_StoreImage() or deleted by calling

vaSi_CustomOp_DeleteImage().

Return value
0: OK

<0 : Cannot get image

69

Visual Applets 3 Custom Operatos User’s Guide

Function
int vaSi_CustomOp_PutOutputImage

(va_custom_op_sim_handle simHandle, const char*

portName, va_image_handle imageHandle)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator port.

Parameter 3 Image handle.

Description Outputs image to the given port.

Return value
0 : Operation has been completed successfully

<0: Cannot output image

Function

bool vaSi_CustomOp_InputHasImage

(va_custom_op_sim_handle simHandle, const char*

portName)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator input port.

Description Returns whether there is an input image available at the port with the given
name.

Return value
true : Image is available

false : No image available

70

Visual Applets 3 Custom Operatos User’s Guide

Function
bool vaSi_CustomOp_OutputReady (va_custom_op_sim_handle

simHandle, const char* portName)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator output port.

Description Returns whether the output port with the given name may take an image.

Return value

true : Output ready for next image

false : Output not ready for taking image

Function
int vaSi_CustomOp_CreateImage (va_custom_op_sim_handle

simHandle, va_image_format_handle format,

va_image_handle * newImage)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2

Image format of the new image.

Parameter 3 Return parameter for image handle.

Description

Creates a blank image based on the format given by parameter 2. Before

returning from the simulation function this image must either be stored by

calling vaSi_CustomOp_StoreImage() or deleted by calling

vaSi_CustomOp_DeleteImage().

Return value

0 : OK

<0 : Could not create image

71

Visual Applets 3 Custom Operatos User’s Guide

Function
int vaSi_CustomOp_DeleteImage (va_custom_op_sim_handle

simHandle, va_image_handle imageHandle)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2

Handle of image which shall be deleted.

Description Deletes image referenced by given image handle.

Return value

0 : Operation has been completed successfully

<0: Error during deleting image

Function
int vaSi_CustomOp_StoreImage (va_custom_op_sim_handle

simHandle, va_image_handle imageHandle, const char*

storeName)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2

Image handle.

Parameter 3 Name as which the image shall be stored. The image may later be queried by
this name.

Description

Stores image in local storage of the operator simulation instance.

Return value

0 : Operation has been completed successfully

VA_SIM_CANNOT_STORE_IMAGE: Cannot create storage for

image

VA_SIM_STORE_NAME_ALREADY_USED: Name ‘storeName’ is already in

use for currently stored image

72

Visual Applets 3 Custom Operatos User’s Guide

Function

int vaSi_CustomOp_GetStoredImagesCount

(va_custom_op_sim_handle simHandle, unsigned int

*count)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2

Return parameter for image count.

Description Returns the number of images which are stored within the operator
simulation instance.

Return value

0: OK

<0: Can’t query information.

Function
int vaSi_CustomOp_GetStoredImage

(va_custom_op_sim_handle simHandle, unsigned int index,

va_image_handle *retImage)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Index within the array of stored images.

Parameter 3 Return parameter for image handle.

Description

Get image which has been stored before. The image is removed from the

image storage. Before returning from the simulation function this image

must either be stored again by calling vaSi_CustomOp_StoreImage() or

deleted by calling vaSi_CustomOp_DeleteImage().

Return value

0 : OK

<0 : Could not get image

73

Visual Applets 3 Custom Operatos User’s Guide

Function
const char* vaSi_CustomOp_GetNameOfStoredImage

(va_custom_op_sim_handle simHandle, unsigned int index)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2

Index within the array of stored images.

Description Returns a string of the image name.

Return value

Not NULL : Value is image name string

NULL : Could not query name

Function
int vaSi_CustomOp_GetStoredImageByName

(va_custom_op_sim_handle simHandle, const char*

storeName, va_image_handle *retImage)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2

Name under which the image has been stored.

Parameter 3 Return parameter for image handle.

Description

Get image which has been stored before with the given storage name. The

image is removed from the image storage. Before returning from the

simulation function this image must either be stored again by calling

vaSi_CustomOp_StoreImage() or deleted by calling

vaSi_CustomOp_DeleteImage().

Return value
0 : OK

<0 : Could not get image

74

Visual Applets 3 Custom Operatos User’s Guide

Function

int vaSi_CustomOp_CreateImageFormat

(va_custom_op_sim_handle simHandle, const char* portName,

va_image_format_handle

*createdFormat)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2 Name of operator port.

Parameter 3 Return pointer for format handle.

Description

Creates a new image format object and returns a corresponding handle. The

format is initialized by the format of the port with the given name. Before

returning from the simulation function the format must become deleted by

calling vaSi_CustomOp_DeleteImageFormat().

Return value
0 : OK

<0 : Could not create format

Function

int vaSi_CustomOp_CopyImageFormat

(va_custom_op_sim_handle simHandle,

va_image_format_handle formatHandle,

va_image_format_handle *createdFormat)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2

Handle of format which is being copied.

Parameter 3 Return parameter for format handle.

Description

Creates a new image format object and returns a corresponding handle. The

format is initialized by the provided format. Before returning from the

simulation function the format must become deleted by calling

vaSi_CustomOp_DeleteImageFormat().

Return value

Not NULL : Value is format handle

NULL : Could not create format

75

Visual Applets 3 Custom Operatos User’s Guide

Function

int vaSi_CustomOp_DeleteImageFormat

(va_custom_op_sim_handle simHandle,

va_image_format_handle formatHandle)

Parameter 1 Simulation handle provided to the operator simulation function.

Parameter 2

Handle of format which is being deleted.

Description Deletes the image format object referenced by the given format handle.

Return value

0: OK

<0 : Could not delete format

Function
int vaSi_Image_GetFormat (va_image_handle

imageHandle, va_image_format_handle

formatHandle)

Parameter 1 Image handle.

Parameter 2

Handle of earlier created format which will be set to format of image.

Description Queries the format of the image referenced by the image handle.

Return value

0 : Operation has been completed successfully

<0: Cannot query format

76

Visual Applets 3 Custom Operatos User’s Guide

Function

int vaSi_Image_SetProperty (va_image_handle

imageHandle, const char* propType, const va_data*

propData)

Parameter 1 Image handle.

Parameter 2 String identifying the property which shall be set.

Parameter 3 Pointer to data structure which will be used for setting the new property.

Description

Set property of the image referenced by the image handle. Following

properties may be set via this function:

“ImgWidth” : Set image width (propData has type VA_UINT32)

“ImgHeight”: Set image height (propData has type VA_UINT32)

Return value

0 : Property has been set successfully

VA_SIM_INVALID_PARAMETER : Cannot identify

property VA_SIM_INVALID_TYPE: Property data has

wrong format

VA_SIM_INVALID_VALUE : Property data has invalid value

Function
int vaSi_Image_GetProperty (va_image_handle

imageHandle, const char* propType, va_data*

propData)

Parameter 1 Image handle.

Parameter 2 Enum value identifying the property which shall be queried.

Parameter 3 Pointer to data structure which will be used for data communication.

Description

Queries the properties of the image referenced by the image handle.

Following properties are available:

“ImgWidth” : Get image width (propData has type VA_UINT32)

“ImgHeight”: Get image height (propData has type VA_UINT32)

77

Visual Applets 3 Custom Operatos User’s Guide

Return value

0 : Property has been queried successfully

VA_SIM_INVALID_PARAMETER : Cannot identify property

VA_SIM_INVALID_TYPE: Property data has wrong format

VA_SIM_INVALID_VALUE : Property data has invalid value

Function int vaSi_Image_SetLineLength (va_image_handle

imageHandle, unsigned int line, unsigned int length)

Parameter 1 Image handle.

Parameter 2 Line number.

Parameter 3 Line length.

Description

Sets the length of the referenced line to an individual value which may differ

to the overall image width (not exceeding the maximum image width defined

by the image format).

Return value
0 : Operation has been completed successfully

<0: Cannot set line length to the given value

Function
int vaSi_Image_GetLineLength (va_image_handle

imageHandle, unsigned int line, unsigned int *length)

Parameter 1 Image handle.

Parameter 2 Line number.

Parameter 3 Return parameter for line length.

Description Returns the length of the referenced line.

Return value
0: OK

<0: Cannot query line length

78

Visual Applets 3 Custom Operatos User’s Guide

Function
int vaSi_Image_SetPixelValue (va_image_handle

imageHandle, uint64_t imagePos, unsigned int compIndex,

int64_t value)

Parameter 1 Image handle.

Parameter 2 Position within the frame.

Parameter 3 Component index.

Parameter 4 Pixel component value.

Description Sets the corresponding pixel component to the given value.

Return value
0 : Operation has been completed successfully

<0: Error setting the pixel component value

Function

int vaSi_Image_GetPixelValue (va_image_handle
imageHandle, uint64_t imagePos, unsigned int compIndex,
int64_t *value)

Parameter 1 Image handle.

Parameter 2

Position within the frame.

Parameter 3 Component index.

Parameter 4

Return parameter for pixel component value

Description Returns the corresponding pixel component value.

Return value

0 : Operation has been completed successfully

<0: Error getting the pixel component value

79

Visual Applets 3 Custom Operatos User’s Guide

Function int vaSi_ImageFormat_SetProperty (va_image_format_handle
formatHandle, const char* propType, const va_data*
propData)

Parameter 1 Image format handle.

Parameter 2 Enum value identifying the property which shall be set.

Parameter 3 Pointer to data structure which holds the new property.

Description Sets properties of the image format referenced by the handle. Following

properties may be set via this function:

“Protocol”: Set image protocol where *propData has the type VA_ENUM

and is set to one of the following values:

VALT_IMAGE

2D

VALT_LINE1D

“ColorFormat”: Set image protocol where *propData has the type

VA_ENUM and is set to one of the following values:

VAF_GRA

Y

VAF_COL

OR

“ColorFlavor”: Set image protocol where *propData has the type VA_ENUM

and is set to one of the following values:

FL_NON

E

FL_RGB

FL_HSI

80

Visual Applets 3 Custom Operatos User’s Guide

FL_YUV

FL_LAB

FL_XYZ

“Parallelism”: Set parallelism (type VA_INT32)

“ComponentCount”: Set number of pixel components (type VA_INT32)

“ComponentWidth”: Set pixel component width (type VA_INT32)

“Arithmetic”: Set pixel component arithmetic where *propData has the type

VA_ENUM and is set to one of the following values:

UNSIGNE

D SIGNED

“MaxImgHeight”: Set max. image height (type VA_INT32)

“MaxImgWidth”: Set max. image width (type VA_INT32)

Return value

0 : Property has been set successfully

VA_SIM_INVALID_PARAMETER : Cannot identify

property VA_SIM_INVALID_TYPE: Property data has

wrong format

VA_SIM_INVALID_VALUE : Property data has invalid value

81

Visual Applets 3 Custom Operatos User’s Guide

Function

int vaSi_ImageFormat_GetProperty (va_image_format_handle

formatHandle, VAImageFormatProperty propType, va_data*

propData)

Parameter 1 Image format handle.

Parameter 2 Enum value identifying the property which shall be queried.

Parameter 3 Pointer to data structure which will be overwritten by the queried property.

Description

Queries properties of the image format referenced by the handle. The

properties which may be queried are identical to the ones which can be set

through the function vaSi_ImageFormat_SetProperty().

Return value

0 : Property has been queried successfully

VA_SIM_INVALID_PARAMETER : Cannot identify property

VA_SIM_INVALID_TYPE: Property data has wrong format

Function int vaSi_CreateStatusMessage (va_custom_op_sim_handle

simHandle, va_status_handle *newMessage)

Parameter 1 Simulation handle.

Parameter 2
Return parameter for created error message.

Description Create a status message which may be submitted to the simulation engine.

Return value
0 : OK

<0: Can’t create message

82

Visual Applets 3 Custom Operatos User’s Guide

Function
int vaSi_SetStatusMessageProperty

(va_custom_op_sim_handle simHandle, va_status_handle

message, const char* propName, const va_data* propValue)

Parameter 1 Simulation handle.

Parameter 2 Status message handle.

Parameter 3 Name of property which shall be set.

Parameter 4 New property value

Description

Alter status message property. Following properties may be set via this

function: “Code”: Set error code (type VA_INT32)

“Severity”: Set severity level where the data (type VA_ENUM) must be one of

the following values:

VA_INFO

VA_WARNING

VA_ERROR

“Description”: Set string description of status (type VA_STRING)

Function
int vaSi_SendStatusMessage (va_custom_op_sim_handle

simHandle, va_status_handle message)

Parameter 1 Simulation handle.

Parameter 2

Handle of status message which shall be submitted.

Description Submitted status message to the simulation engine.

Return value

0 : OK

<0: Can’t submit message

83

Visual Applets 3 Custom Operatos User’s Guide

7.2 Throughput Analysis

For throughput analysis within VisualApplets the following function must be exported:

int AnalyzeThroughputOfOPNAME (va_custom_op_sim_handle simHandle,

const char* inPort, const char* outPort,

double* throughputRatio)

where OPNAME is the name of the Custom Operator. The function must return a factor

throughputRatio which is the ratio of data rate between input inPort and output outPort of

the operator. When there is no direct relation between inPort and outPort the function must

return -1 otherwise 0 is returned.

84

Visual Applets 3 Custom Operatos User’s Guide

8 Creating Custom Operator Documentation

Documentation of the operator should be provided as an HTML file. When available, all files which

make up the documentation need to be specified under the General tab / HTML Help Files:

The first file that is specified is interpreted to be the starting point of the operator’s

documentation. The naming convention for this file is: <NameOfCustomOperator>.htm.

Make sure you provide a CSS file. Make sure you also provide all related image files.

(In XML, the entry Operator/Info/HtmlHelpFile points to these files.)

You can use the operator template provided in the VisualApplets install directory in subdirectory

Examples/CustomLibrary/OperatorTemplate.

85

Visual Applets 3 Custom Operatos User’s Guide

9 Completing the Custom Operator

When you have wrapped your HDL code so that its interface matches the generated black box, you

need to proceed some last steps for completing your custom operator:

1. Create a netlist out of your implementation.

Set Add IO Buffer = NO

When creating the netlist, make sure that your synthesis tool doesn’t automatically add IO

buffers. In case you use XST for netlist synthesis you set

Add IO Buffer = NO

Otherwise, the resulting NGC file will cause errors during the VisualApplets build flow.

Warnings During Netlist Generation

When generating the net list, warnings may be output concerning unused IO Ports of the

custom operator interface. Unused IO Ports are all ports that were generated according to

your operator definition, but are not connected with your IP core. You may ignore these

warnings.

Examples of this behavior are all custom operator examples you find in the Examples directory

of your VisualApplets installation:

\Examples\CustomLibrary

2. If required, also define a constraints file (*.ucf format if you use Xilinx ISE, *.xdc format if
you use Xilinx Vivado).

3. Optionally, set up the operator’s software interface as described in section 7.

4. Optionally, create the operator documentation as described in section 8.

Now, you need to complete the operator definition in VisualApplets.

To do so, proceed as follows.

Required steps:

86

Visual Applets 3 Custom Operatos User’s Guide

1. Go to the Core tab.

2. Specify the netlist file you generated.

3. Specify the constraints file if you defined constraints.

4. Specify the supported devices: The device name is the name of the FPGA type of the target

platform. Please use exactly the same spelling as provided in the project info box of

VisualApplets. If several FPGA types are supported, use a space separated list of names.

If a design uses the custom operator, but the FPGA on the target platform is not in this list,
the DRC will report an error that the operator is not supported by the target platform.

5. Specify the supported Xilinx Tool(s). You can check the boxes for both ISE and Vivado.

Netlists generated with ISE are usually also compatible with the Vivado build flow but you

should check whether this is the case for your operator implementation. You need to

87

Visual Applets 3 Custom Operatos User’s Guide

define the minimal version number of the tool which supports the given netlist. Typically

this would be the version which you used for creating the net list.

If a design uses the custom operator, but the specified tools are not used for building the

design, the DRC will report an error that the operator is not supported by the target

platform.

Defining Multiple Cores

You can define multiple cores for the same custom operator. This will allow to use device and
tool specific implementations of the custom operator so for different target platforms the
appropriate implementation is chosen for building an applet.

Optional steps:

6. Optionally, enter the consumption of logic resources by the operator. Simply enter the

values estimated by the Xilinx tools during generation of netlist.

7. Under the General tab, specify the path to your simulation library (the custom operator’s

software interface).

8. Under the General tab, specify the path to the icon file. This is the file that contains the

icon that will be used when your custom operator is displayed in VisualApplets.

9. Under the General tab, specify all files that make up your custom operator documentation.

Make sure you also provide a CSS file and all related image files.

10. If you want to protect your operator design: In the left bottom corner, activate the option

“Protected”. In the dialog that opens:

a) Make sure protection mode Password is activated.

b) Enter your password.

c) Click OK.

88

Visual Applets 3 Custom Operatos User’s Guide

You can always protect your custom operator design also at a later point of time,

using the context menu of the custom library element.

Protecting Options

After protection has been enabled, the custom operator is made a

“black box”. There are two ways to protect a custom operator design:

 Protection via password: The custom operator design can

afterwards be opened and edited via password. Users that do not

have the password will not be able to see any details of the custom

operator (black box).

 Irreversible protection: If you select protection mode One-Way,

the custom operator is made a black box forever and cannot be re-

opened, not even by yourself.

"One-Way" protection is irreversible: If you select protection mode One Way (instead of

Password), the user library element can never be re-opened, not even by yourself. If you plan

to enhance the element at a later point of time, make sure you select protection mode

Password instead. Alternatively, you can save a copy of the element (as a hierarchical box or a

non-protected operator) before enabling this protection mode.

11. Click Save.

Now, your new custom operator is ready for being used in designs.

89

Visual Applets 3 Custom Operatos User’s Guide

10 Using New Custom Operators

10.1 Distributing the Custom Library or the Individual Custom Operator

A custom library with all contained operators is stored as one single <LibaryName>.vl file.

<LibaryName> is the name of the custom library.

This file can be distributed and directly applied in VisualApplets. It simply needs to be copied into

the Custom Library directory which is specified in the VisualApplets settings (Settings -> System

Settings -> Paths -> Custom Libraries).

1. Copy the new <LibaryName>.vl file to the Custom Library directory of your VisualApplets

installation.

2. Re-scan the custom library in the VisualApplets GUI: Right-click on the library name and

from the sub menu select Rescan Custom Library Directory.

90

Visual Applets 3 Custom Operatos User’s Guide

In the VisualApplets examples directory, you find a ready-to-use library called CustomLibrary.vl
which contains all example operators.

10.2 Update from Custom Library

When you make changes to a custom operator, these changes are not reflected in the designs

where you already use the custom operator. Therefore, you need to update the custom operator

instances in the designs.

1. Right-click on the operator.

2. From the sub-menu, select Update from Custom Library or Quick Update from Custom

Library.

The update mechanism for Custom Libraries is exactly the same as for User Libraries.

91

Visual Applets 3 Custom Operatos User’s Guide

10.3 Importing and Exporting Individual Custom Operators

You can import and export individual custom operators by importing/exporting the XML definition

of the operator.

To import a custom operator:

1. Right-click on the custom library where you want to import the custom operator to.

2. From the sub-menu, select Import Operator -> From XML.

3. Specify the path to the custom operator’s XML definition:

4. Click Open.

92

Visual Applets 3 Custom Operatos User’s Guide

Immediately, the Edit Custom Operator dialog opens:

5. Click Save.

After saving, the imported operator is directly available in the custom library:

93

Visual Applets 3 Custom Operatos User’s Guide

11 Operator Template and Examples

11.1 Examples

In the install directory, you find three completed custom operators which you can use as

reference.

You find the examples here:

\Examples\CustomLibrary

11.2 Custom Operator Template

In the install directory, you find a custom operator template which you can use for defining your

custom operators.

\Examples\CustomLibrary To use the custom operator

template:

1. Right-click on the custom library where you want to create the new custom operator in.

2. From the sub-menu, select Import Operator -> From XML.

94

Visual Applets 3 Custom Operatos User’s Guide

3. Specify the path to the operator template:

4. Click Open.

Immediately, the Edit Custom Operator dialog opens:

5. Give a name to your new custom operator and proceed as described in section 3.

95

Visual Applets 3 Custom Operatos User’s Guide

12 Appendix

12.1 XML Format for Custom Operator Specification

The definition of a custom operator is stored in XML format. A concerning XML file can be

exported from the operator library or an operator can be imported using an earlier exported XML

file.

In the following, we describe the required parameters where the parameter name is related to an
XML tag with the same name. A parameter like ImgInInfo will translate to an XML entry like:

<ImgInInfo> ImgInPortNames </ImgInInfo> where ImgInPortNames is the value which in

this case would be a sequence of port names. The parameters are hierarchically ordered. In the

following tables, lines with gray background will notify the hierarchy position where the

parameters are expected.

Simple parameter values can be of following types:

 Choice: the allowed values are YES or NO

 String: an ASCII string without whitespace

 Integer

 Floating-point

Some parameters are composed as a structure of values where arrays or records are possible

elements for structuring. Arrays are entered by a list of values separated by white space where the

values themselves may be structured. Records are entered by a scheme like follows where

RecordName is the record identifier, attrX are the identifiers for the record entries and

attrXValue are the values:

<RecordName attr1=”attr1Value” .. attrN=”attrNValue”/>

An example would be providing a record called port with entries for name and width:

<port name=”flag” width=”4”/>

The root tag of the XML format is “Operator” with an attribute “name” where the Custom

Operator name should be provided:

<Operator name=”XYZ”>

…
</Operator>

96

Visual Applets 3 Custom Operatos User’s Guide

Comply with VHDL Naming Conventions

When defining the operator name in the VA GUI, make sure you conform to the VHDL naming

conventions.

VHDL valid names are defined as follows:

“A valid name for a port, signal, variable, entity name, architecture body, or similar object

consists of a letter followed by any number of letters or numbers, without space. A valid name

is also called a named identifier. VHDL is not case sensitive. However, an underscore may be

used within a name, but may not begin or end the name. Two consecutive underscores are

not permitted.“

Parameter Name Type Description

Operator/Info

Vendor String Name of Vendor.

Version String

Version number of the operator. The value can be

freely chosen and is intended for version

identification by the user.

Cores Array of String

List of core netlists for the operator. The first string

must be Core0 and must always be there. If more

than one core is available the naming convention

for them is Core<N> where <N> is a integer

number incremented with every core.

LibraryFile String

Quoted name of file containing software library

(dynamic link library) containing the high-level

simulation model for the operator.

97

Visual Applets 3 Custom Operatos User’s Guide

Parameter Name Type Description

IconFile String Quoted name of file containing the operator icon.

HtmlHelpFiles Array of String

List of quoted file names which contain help

content (html + images). The first file is considered

as the main HTML file.

Operator/IO

RegInInfo Array of String
List of names of later defined info structures

(Operator/RegIn) describing write register ports.

RegOutInfo Array of String
List of names of later defined info structures

(Operator/RegOut) describing read register ports.

ImgInSyncMode String

String defining whether the inputs at the ImgIn
ports are synchronous or asynchronous to each

other. This string may either be “Sync” or “Async”.

ImgInInfo Array of String List of names of later defined info structures
(Operator/ImgIn) describing the properties of the

image input ports. Several list entries may refer to

the same structure which then means that several

ports of the same kind of image input interface are

available.

ImgOutInfo Array of String List of names of later defined info structures

(Operator/ImgOut) describing the properties of the

image output ports. Several list entries may refer

to the same structure which then means that

several ports of the same kind of image output

interface are available.

GPIn Array of String List of pin names for general purpose signal inputs.

98

Visual Applets 3 Custom Operatos User’s Guide

Parameter Name Type Description

GPOut Array of String List of pin names for general purpose signal

outputs.

MemInfo Array of String List of names of later defined info structures

(Operator/Mem) describing the properties of the

memory interface ports. Several list entries may

refer to the same structure which then means that

several ports of the same kind of memory interface

are available.

Operator/Properties

NrLut Integer Number of FPGA LUT elements consumed by the
operator

NrRegs Integer Number of FPGA registers consumed by the

operator

NrBlockRam Integer Number of block ram elements consumed by the
operator

NrEmbeddedMult Integer Number of embedded multipliers consumed by the

operator

Image input port specification is done by following syntax within the configuration file:

<ImgIn name=”IMG_IN_IDENTIFIER”> Parameters </ImgIn>;

Here IMG_IN_IDENTIFIER is one of the image input port names which have been provided in the

above parameter Operator/IO/ImgInInfo. The content Parameters is specifying the properties of the

image interface port:

99

Visual Applets 3 Custom Operatos User’s Guide

Parameter name Type Description

Operator/ImgIn

Width Integer Width of the image data port

FIFODepth Integer Depth of the buffer FIFO for input data which

at least needs to be provided by the VA core.

The value must be a power of two minus 1

between 15 and 1023.

Formats Array of

Record

List of image format records ImgFormat which

are supported by the port. For the naming

scheme of image formats see below.

The image format records have the following structure:

<ImgFormat name=”FORMAT” maxWidth=”X1”

maxHeight=”Y1” alias=”NAME1”/>

The entry FORMAT is a String value for an image format coded by the below discussed naming

scheme for image formats. The attributes maxWidth and maxHeight are optional and fix the limits

of image size. If they are not present, the image size constraints can be freely chosen by the user

within VisualApplets later on. The attribute alias is optional as well and, if present, defines the

name under which the format will be displayed in the GUI.

Image output port specification is done by following syntax within the configuration file:

<ImgOut name=”IMG_OUT_IDENTIFIER”> Parameters </ImgOut>;

Here IMG_OUT_IDENTIFIER is one of the image output port names which have been provided in

the above parameter Operator/IO/ImgOutInfo. The content Parameters is specifying the properties of

the image interface port:

100

Visual Applets 3 Custom Operatos User’s Guide

Parameter Name Type Description

Operator/ImgOut

Width Integer Width of the image data port

FIFODepth Integer Depth of the buffer FIFO for output data which at

least needs to be provided by the VA core. The

value must be a power of two minus 1 between 15

and 1023.

Formats Array of

Record

List of image format records ImgFormat which are

supported by the port. For the naming scheme of

image formats see below.

Image formats are coded by the following naming scheme:

{BaseFormat}{BitsPerPixel}x{Parallelism}

Optionally there can be suffixes for image dimension and the notification of signed component

data:

{BaseFormat}{BitsPerPixel}x{Parallelism}x{Dimension}{Sign}

The meaning of the dimension is as follows:

 Dimension = 2 – a two-dimensional image means that the image is structured

both by end-of-line and end-of-frame markers.

 Dimension = 1 – a one-dimensional image means that there are no end-of-frame

markers which divide the incoming lines into frames.

When no dimension is specified a value of two is assumed. The suffix {Sign} can be s for signed

pixel components or u for unsigned values where the default value is u when no such suffix is

provided. Supported color formats are rgb, yuv, hsi, lab and xyz.

Examples are:

 gray8x4 – gray format with 8-bit pixel and parallelism 4

 rgb24x2 – rgb color format with 3x8-bit pixel and parallelism 2

101

Visual Applets 3 Custom Operatos User’s Guide

 gray16x1 – gray format with 16-bit pixel, only single pixel in a data word

 gray8x4x1 – one dimensional gray image with 8-bit per pixel and parallelism 4

 gray16x1s – gray image with signed 16-bit components, only single pixel in a data

word

Register input port specification is done by following syntax within the configuration file:

<RegIn name=”REG_IN_IDENTIFIER”> Parameters </RegIn>;

Here REG_IN_IDENTIFIER is one of the register input port names which have been provided in the

above parameter Operator/IO/RegInInfo. The content Parameters is specifying the properties of the

register interface port:

Parameter Name Type Description

Operator/RegIn

Width Integer Width of the register port

Register output port specification is done by following syntax within the configuration file:

<RegOut name=”REG_OUT_IDENTIFIER”> Parameters </RegOut>;

Here REG_OUT_IDENTIFIER is one of the register output port names which have been provided in

the above parameter Operator/IO/RegOutInfo. The content Parameters is specifying the properties of

the register interface port:

Parameter name Type Description

Operator/RegOut

Width Integer Width of the register port

Memory interface specification is done by sections with following syntax within the configuration

file:

<Mem name=”MEM_IDENTIFIER”> Parameters </MEM>

102

Visual Applets 3 Custom Operatos User’s Guide

Here MEM_IDENTIFIER is one of the memory port names which have been provided in the above

described parameter Operator/IO/MemInfo. The content Parameters is specifying the properties of

the memory interface:

Parameter name Type Description

Operator/Mem

DataWidth Integer Data width

AddrWidth Integer Address width

WrFlagWidth Integer Width of flag for marking write accesses. This

parameter must be >= 1.

RdFlagWidth Integer Width of flag for marking read accesses. This
parameter must be >= 8.

WrCntWidth Integer Width of port for communicating the number

of available write commands

RdCntWidth Integer Width of port for communicating the number

of available read commands

SyncMode String This parameter signals the relation of the

memory interface clock and the design clock.

Following values are possible:

“SyncToDesignClk” – memory interface ports

are synchronous to iDesignClk.

“SyncToDesignClk2x” – memory interface
ports are synchronous to iDesignClk2x.

Specification of IP core netlists is done by sections with following syntax within the configuration
file:

<Core name=”CORE_IDENTIFIER”> Parameters </Core>

103

Visual Applets 3 Custom Operatos User’s Guide

Here Core_IDENTIFIER is one of the core names which have been provided in the above

described parameter Operator/Cores. The content Parameters is specifying the properties of the IP

core:

Parameter name Type Description

Operator/Core

Devices Array of
String

List of FPGA device names which are
supported by the core

(Example: “XC3S1600E XC3S4000”).

NetlistFile String Quoted UTF-8 encoded file name for the net

list.

ConstraintsFile String Quoted UTF-8 encoded file name for an
optional constraints file.

MinVersionISE String Minimum version number of ISE tool flow

which can use the given netlist (Example:

“14.6” for ISE 14.6). If ISE is not supported this
string is empty.

MinVersion String Minimum version number of Vivado tool flow

which can use the given netlist (Example:

“2014.4” for Vivado 2014.4). If Vivado is not

supported this string is empty.

104

Visual Applets 3 Custom Operatos User’s Guide

Contact Details

Europe, Middle East, Africa

Basler AG
Konrad-Zuse-Ring 28
68163 Mannheim
Germany

Tel.: +49 (0) 621 789507 0
Fax: +49 (0) 621 789507 10

support.europe@baslerweb.com

The Americas

Basler Inc.
855 Springdale Drive, Suite 203
Exton, PA 19341
USA

Tel. +1 610 280 0171
Fax +1 610 280 7608

support.usa@baslerweb.com

Asia-Pacific

Basler Asia Pte. Ltd.
35 Marsiling Industrial Estate Road
3
#05–06
Singapore 739257

Tel. +65 6367 1355
Fax +65 6367 1255

support.asia@baslerweb.com

https://www.baslerweb.com/en/sales-support/support-contact/

Disclaimer
While every precaution has been taken in the preparation of this manual, Basler AG assumes no

responsibility for errors or omissions. Basler AG reserves the right to change the specification of

the product described within this manual and the manual itself at any time without notice and

without obligation of Basler AG to notify any person of such revisions or changes.

Trademarks

All trademarks and registered trademarks are the property of their respective owners.

Copyright Note

© Copyright 2021 Basler AG. All rights reserved. This document may not in whole or in part, be

reproduced, transmitted, transcribed, stored in any electronic medium or machine readable

form, or translated into any language or computer language without the prior written consent of

Basler AG.

mailto:support.europe@baslerweb.com
mailto:support.usa@baslerweb.com
mailto:support.asia@baslerweb.com
https://www.baslerweb.com/en/sales-support/support-contact/

	1 Introduction
	1.1 Workflow
	1.2 VisualApplets Custom Operator Functionality
	1.3 Operator Types
	1.4 Synchronous and Asynchronous Operator Ports

	2 Interface Architecture
	2.1 Clock Interface
	2.2 Reset and Enable
	2.3 Register Interface
	2.4 Interfaces for Image Data
	2.4.1 Image Protocols
	2.4.2 Image Input Ports
	2.4.3 Image Output Ports

	2.5 General purpose I/O
	2.6 Memory Interface

	3 Defining an Individual Custom Operator via GUI
	3.1 Creating a New Custom Library
	3.2 Creating a New Custom Operator
	3.3 Defining Basic Information about Custom Operator
	3.4 Defining the Image Input Ports
	3.5 Defining the GPIO Ports
	3.6 Defining the Image Output Ports
	3.7 Defining the Memory Ports
	3.8 Defining the Registers of the Custom Operator

	4 Generation of VHDL Black Box and Test Bench
	5 Operator Interface Ports
	5.1 Clock System, Reset and Enable
	5.2 Parameter Interface
	5.3 Image Communication Interfaces
	5.3.1 Interfaces of Type ImgIn
	5.3.2 Interfaces of Type ImgOut

	5.4 Memory Interfaces
	5.5 General Purpose I/O pins

	6 VHDL Simulation and Verification
	6.1 Simulation Framework
	6.2 Emulation of Register Interface
	6.3 Emulation of ImgIn Interface
	6.4 Emulation of ImgOut Interface
	6.5 Emulation of Memory Communication
	6.6 GPIO Emulation

	7 Defining the Custom Operator’s Software Interface
	7.1 High-level Simulation
	7.1.1 Overview
	7.1.2 Communicating Data
	7.1.3 Detailed Description of Interface Functions

	7.2 Throughput Analysis

	8 Creating Custom Operator Documentation
	9 Completing the Custom Operator
	Protecting Options
	10 Using New Custom Operators
	10.1 Distributing the Custom Library or the Individual Custom Operator
	10.2 Update from Custom Library
	10.3 Importing and Exporting Individual Custom Operators

	11 Operator Template and Examples
	11.1 Examples
	11.2 Custom Operator Template

	12 Appendix
	12.1 XML Format for Custom Operator Specification

	Contact Details
	Disclaimer

